$[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻ and $[Na_9Fe_{20}Se_{38}]^{9-}$: High-Nuclearity Clusters by Mono- or Bicyclization of Unidimensional Polymeric Fragments and the Existence of Isomeric Monocyclic Clusters

Jing-Feng You,[†] G. C. Papaefthymiou,[‡] and R. H. Holm^{*,†}

Contribution from the Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, and the Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Received August 19, 1991

Abstract: Alteration of conditions in the assembly system that has previously afforded the cyclic cluster $[\alpha$ -Na₂Fe₁₈S₃₀]⁸⁻ has led to the preparation of two new high-nuclearity clusters of unprecedented structure. The system FeCl₃:3Na-(PhNCOMe): $nLi_2Q/EtOH$ (n = 1.8 for Q = S; n = 2 for Q = Se), when treated with Bu_4NBr after 10–12 h and allowed to react and crystallize over 5 days, affords the black compounds $(Bu_4N)_6Na_4Fe_{18}S_{30}$ (1) or $(Bu_4N)_{4.5}Na_{13.5}Fe_{20}Se_{38}$ 2PhNHCOMe-12EtOH (2-12EtOH) in good yield. Compound 1-8EtOH (2-15EtOH) crystallizes in monoclinic (orthorhombic) space group $P2_1/n$ (*Pbcn*) with a = 17.862 (5) (34.551 (11)) Å, b = 27.383 (11) (26.169 (5)) Å, c = 18.534 (6) (24.244 (8)) Å, $\beta = 91.12$ (2)°, and Z = 2 (4). The crystal structures include discrete Bu₄N⁺ ions, solvate molecules (EtOH, PhNHCOMe). and cluster anions. Compound 1.8 EtOH contains the monocyclic cluster $[\beta_2 Na_2 Fe_{18}S_{30}]^{8-}$, which has a centrosymmetric toroidal shape of lateral dimensions 12.4 × 16.3 Å, a maximum thickness of 3.3 Å, and no terminal ligands. It is constructed by the fusion of 22 nonplanar Fe₂S₂ rhombs in edge- and vertex-sharing modes such that there are 18 μ_2 -S and 12 μ_3 -S atoms binding 18 nearly coplanar iron atoms in tetrahedral FeS_4 sites. Two sodium ions are bound to interior sulfur atoms of the cluster whose framework can be considered to arise from the sequential connection of two Fe_2S_2 and four cuboidal Fe_3S_4 fragments and two tetrahedral FeS_4 sites. This cluster is a *structural isomer* of $[\alpha$ -Na₂ $Fe_{18}S_{30}]^8$ whose atom connectivity is different $(20 \mu_2 \cdot S, 8 \mu_3 \cdot S, 2 \mu_4 \cdot S, 2 Fe_3S_4 + 2 Fe_6S_9$ fragments). A structural comparison of the two isomers is presented. Compound 2·12EtOH contains the *bicyclic* cluster $[Na_9Fe_{20}Se_{38}]^9$ of prolate ellipsoidal shape with the dimensions 11.2 × 17.4 Å, imposed C_2 symmetry, and no terminal ligands. The structure is built up from 21 nonplanar Fe_2Se_2 rhombs, 15 of which share vertices to form three separate but equivalent $Fe_6(\mu_2$ -Se)₁₀ chains. These chains, positioned roughly parallel to an idealized C₃ axis that contains the additional two nonchain Fe atoms and two Se atoms, are anchored at each end of the molecule by attachment to three edge-shared bridgehead rhombs. Nine sodium ions are encapsulated within the selenium-rich interior cavity, distinguishing the molecule as inorganic thiacryptand. $[Na_9Fe_{20}Se_{38}]^9$ is the only known bicyclic cluster. Both clusters have singlet ground states, are electronically delocalized and antiferromagnetically coupled, and are of dimensions that place them in the nanometer size range. Magnetic and Mössbauer spectroscopic data are reported. Reaction of $[Na_9Fe_{20}Se_{38}]^9$ with *p*-toluenethiol causes breakdown to the major product $[Fe_4Se_4(S-p-tol)_4]^{2^-}$ and minor amounts of $[Fe_6Se_9(S-p-tol)_2]^{4^-}$ and $[Fe_2Se_2(S-p-tol)_4]^{2^-}$. The electronic structures of the two clusters as analyzed at the extended Hückel level have quasiband structures in which the highly delocalized MO's divide into five distinct blocks. Leading results from this analysis are described. It is suggested that clusters $[\alpha-Na_2Fe_{18}S_{30}]^{8-}$. $[\beta-Na_2Fe_{18}S_{30}]^{8-}$. $[\beta-Na_2Fe_{18}S_{30}]^{8-}$. $[\beta-Na_2Fe_{18}S_{30}]^{8-}$. and that the α - and β -isomers of the cyclic cluster can be interconverted by relatively minor bond rearrangements. The existence of these isomers is predicted from molecular topological arguments, which are briefly summarized. The general concept demonstrated by these clusters is that, under promotion by an appropriate reagent, high-nuclearity clusters can be formed by termination of unidimensional polymeric fragments via mono- or bicyclization.

Introduction

The chemistry of metal cluster molecules with dimensions in the nanometer size range is attracting increased attention in the exploration of the largely uncharted area between conventional molecular solids and infinite atomic arrays of solid-state compounds.¹⁻⁵ In the area of metal chalcogenides, high-nuclearity molecular clusters have been assembled, stabilized, and solubilized most effectively by the use of tertiary phosphines as terminal ligands. Striking examples include $Ni_{20}Te_{18}(PEt_3)_{12}$,⁶ $Pd_{20}As_{12}(PPh_3)_{12}$,⁷ $Ni_{34}Se_{22}(PPh_3)_{10}$,⁸ $Cu_{36}Se_{18}(PtBu_3)_{12}$,⁹ and $Cu_{20}Se_{26}(PEt_3)_{21}$.¹⁰ Cu₇₀Se₃₅(PEt₃)₂₂,

In our studies of iron-sulfur clusters, we have observed that all known structures can be conceived as systematically built up by vertex- and/or edge-sharing of Fe_2S_2 rhombs.¹¹ These sharing modes. alone or in combination, are found in the clusters of known structures with nuclearities 2-4, 6-8, 18, and 20.12,13 Structural complexity nearly culminates with $[Na_2Fe_{18}S_{30}]^{8-}$, a cyclic cluster whose structure is depicted in Figure 1. The cluster is constructed by the fusion of 24 nonplanar rhombs such that there are 20 μ_2 -S, 8 μ_3 -S. and 2 μ_4 -S atoms binding 18 coplanar Fe atoms in tetrahedral sites. This structure, in particular, raises the question

of uniqueness, i.e., more than one connectivity pattern of Fe_2S_2 rhombs leading to structural isomers. Such a question can be examined by considerations of molecular topology.

(5) (a) Teo, B. K.; Zhang, H. Polyhedron 1990, 9, 1995. (b) Teo, B. K.; Zhang, H.; Shi, X. J. Am. Chem. Soc. 1990, 112, 8552 and references therein.

- (7) Fenske, D.; Fleischer, H.; Persau, C. Angew. Chem., Int. Ed. Engl. 1989, 28, 1665.
- (8) Fenske, D.; Ohmer, J.; Hachgenei, J.; Merzweiler, K. Angew. Chem., Int. Ed. Engl. 1988, 27, 1277.
- (9) Fenske, D.; Krautscheid, H.; Balter, S. Angew. Chem., Int. Ed. Engl.
- 1990, 29, 796. (10) Fenske, D.; Krautscheid, H. Angew. Chem., Int. Ed. Engl. 1990, 29,
- (11) You, J.-F.; Snyder, B. S.; Papaefthymiou, G. C.; Holm, R. H. J. Am. Chem. Soc. 1990, 112, 1067.

(12) You, J.-F.; Holm, R. H. *Inorg. Chem.* **1991**, *30*, 1431. (13) Reynolds, M. S.; Holm, R. H. *Inorg. Chem.* **1988**, *27*, 4494. This article contains structural depictions of all but the Fe_{18}^{-11} and Fe_{20}^{-12} clusters.

⁽¹⁾ Schmid, G. Struct, Bonding (Berlin) 1985, 62, 51. Schmid, G. Polyhedron 1988, 7, 2321.

⁽²⁾ Kharas, K. C. C.; Dahl, L. F. Adv. Chem. Phys. 1988, 70, 1.
(3) (a) Steigerwald, M. L.; Brus, L. E. Annu. Rev. Mater. Sci. 1989, 19, 471.
(b) Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. Annu. Rev. Phys. Chem. 1990, 41, 477. (4) DiSalvo, F. J. Science 1990, 247, 690.

⁽⁶⁾ Brennan, M. G.; Siegrist, T.; Stuczynski, S. M.; Steigerwald, M. L. J. Am. Chem. Soc. 1989, 111, 9240.

Harvard University. [‡]Massachusetts Institute of Technology.

^{0002-7863/92/1514-2697\$03.00/0 © 1992} American Chemical Society

Figure 1. The structure of $[\alpha-Na_2Fe_{18}S_{30}]^{8-}$ as found in the compound (Pr₄N)₆Na₄Fe₁₈S₃₀·14MeCN.¹¹

In metal clusters that are not supported by strong metal-metal interactions, molecular topological closure requires all bonds originating at a metal atom to terminate at either a bridging or terminal ligand atom. Thus for a given formula $[M_m Q_n L_l]^{z-}$, where M is a metal. Q is a μ_2 , μ_3 , or μ_4 bridging ligand, and L is a terminal ligand, all possible connectivity patterns must meet the topological requirements of eqs 1 and 2, in which n_{μ} is the number of bridging atoms of a given multiplicity. The number of solutions offered by the two equations is limited, thus allowing specification of all possible bridging mode combinations for a given formula.

$$n = n_{\mu 2} + n_{\mu 3} + n_{\mu 4} \tag{1}$$

$$4m = l + 2n_{\mu 2} + 3n_{\mu 3} + 4n_{\mu 4} \tag{2}$$

For certain formulas, there is only one bridging modality $[n_{\mu 2}, n_{\mu 3}, n_{\mu 4}]$. Thus, for $[M_3 Q_4 L_3]^{z-1}$ it is [3.1,0] and for $[M_8 Q_6 L_8]^{z-1}$ it is [0,0,6]. However, unique solutions are not usually the case, as illustrated with a tetranuclear cluster. For $[M_4Q_4L_4]^{z^-}$, three bridging modalities are possible: [0,4,0], [1.2,1], and [2,0,2]. Each of these is degenerate in the sense that a given modality corresponds to more than one structural isomer. Details of the topological treatment will be developed elsewhere. For the present purpose of illustration, we observe that the modalities accommodate 3 + 3 + 4 = 10 isomers under the limitation that they are constructed entirely from M_2Q_2 rhombs. These isomers (1-10) are illustrated in Figure 2.

Among the ten formal isomer possibilities, for M = Fe(II,III)five of these are sterically improbable or impossible because of large distortions from the stereochemically preferred tetrahedral structure of these ions. If we add the further constraint that each iron site has one terminal ligand, a frequent structural feature of Fe-Q clusters, then only two possibilities, 3 and 6, remain. Both have been realized experimentally, the former as the familiar cubane clusters $[Fe_4Q_4L_4]^{3-2-1-}$ (Q = S, Se, Te; L = monoanion). Application of these same constraints to $[Fe_3Q_4L_3]^{z-}$ and [Fe₈Q₆L₈]²⁻ allows only the cuboidal structure, found for protein-bound $Fe_3S_4(S\cdot Cys)_4$.¹⁴ and the stellated octahedral structure, observed for $[Fe_8S_6I_8]^{3-,15}$ respectively. In the case of $[M_6Q_6L_6]^{2-}$, there are four bridging modalities: [0,6.0], [1,4.1], [2,2.2], [3,0.3]. The first two of these have been achieved with the prismane clusters $[Fe_6S_6L_6]^{2-,3-16}$ and the basket clusters $[Fe_6S_6-(PR_3)_4L_2]^{,13,17}$ respectively. which have isomeric (but not isoelectronic) Fe₆S₆ cores.

Application of eqs 1 and 2 to the much more complicated case of $[Fe_{18}S_{30}]^{z-}$ yields seven solutions, emphasizing the possibility of structural isomers. In addition, consideration of the structure

Figure 2. Formulas of the 10 possible structural isomers of the molecule $[M_4Q_4L_4]^{z^2}$ built up entirely from M_2Q_2 rhombs. The structures are organized under the bridging modalities $[n_{\mu 2}, n_{\mu 3}, n_{\mu 4}]$.

of $[Na_2Fe_{18}S_{30}]^{8-}$ raises questions as to the relation of the size of the encapsulated alkali ion and the chalcogenide to the stability of the cyclic configuration. In this virtually unexplored area of large metal-chalcogenide clusters, variation of these size parameters could lead to the synthesis of new cyclic isomers, or to entirely new types of soluble chalcogenoferrates. We have expanded our investigation of cluster self-assembly systems of the type affording [Na₂Fe₁₈S₃₀]⁸⁻¹¹ and have successfully prepared an isomer of that cluster. $[\beta - Na_2Fe_{18}S_{30}]^{8-}$. The structure in Figure 1 is hereafter designated $[\alpha - Na_2Fe_{18}S_{30}]^{8-}$. Investigation of related assembly systems containing selenide has resulted in the preparation of [Na₉Fe₂₀Se₃₈]⁹⁻, an unprecedented cluster whose essential structural features we have recently communicated,¹² In this report, we describe full details of the synthesis, structures, and properties of these two new clusters, whose dimensions place them in the nanometer size regime.

Experimental Section

Preparation of Compounds. All operations were carried out under a pure dinitrogen atmosphere. Solvents were thoroughly dried and degassed before use. Li_2Se was prepared by reduction of selenium with $LiEt_3BH$ in THF¹⁸ or with lithium metal in THF.¹⁹

 $(Bu_4N)_6Na_2[\beta-Na_2Fe_{18}S_{30}]$. The procedure for the preparation of $(Pr_4N)_6Na_2[\alpha-Na_2Fe_{18}S_{30}]^{11}$ was followed but with the use of a slurry of 4.41 g (96.0 mmol) of Li₂S in 350 mL of ethanol and 17.4 g (54 mmol) of Bu₄NBr in 50 mL of ethanol. After the product was washed with ethanol and dried, the desolvated cluster compound was obtained as a black crystalline solid in 70-75% yield (multiple preparations). The product was further purified by recrystallization from a solution of 0.15 M Na[PhNC(O)Me] in methanol. The collected solid was washed with 4×50 mL of methanol and 2×50 mL of ether and dried in vacuo for 10 h. Anal. Calcd for $C_{96}H_{216}Fe_{18}N_6Na_4S_{30}$; C, 32.81; H, 6.20; Fe. 28,61; N, 2.39; Na, 2.62; S, 27.37. Found: C, 32.42; H, 6.21; Fe, 28.36; N, 2.46; Na, 2.99; S, 27.21; Li, 0.0.

Powder X-ray diffraction tests were conducted on bulk samples ob-

(14) (a) Kissinger, C. R.; Adman, E. T.; Sieker, L. C.; Jensen, L. H. J. (14) (2) Kissinger, C. K.; Adman, E. T.; Sicker, L. C., Jensen, L. H. J.
 Am. Chem. Soc. 1988, 110, 8721. (b) Kissinger, C. R.; Sicker, L. C.; Adman,
 E. T.; Jensen, L. H. J. Mol. Biol. 1991, 219, 693. (c) Robbins, A. H.; Stout,
 C. D. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 3639. Robbins, A. H.; Stout,
 C. D. Proteins 1989, 5, 289. (d) Stout, C. D. J. Biol. Chem. 1988, 263, 9256.
 Stout, C. D. J. Mol. Biol. 1989, 210, 383.
 (15) Pohl, S.; Saak, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 907.
 (16) (a) Kanatzidis, M. G.; Hagen, W. R.; Dunham, W. R.; Lester, R. K.;
 Currenvic D. J. Ac. Chem. Soc. 1985, 102.

Coucouvanis, D. J. Am. Chem. Soc. 1985, 107, 953. (b) Kanatzidis, M.; Salifoglou, A.; Coucouvanis, D. Inorg. Chem. 1986, 25, 2460.

(17) Snyder, B. S.; Holm, R. H. Inorg. Chem. 1988, 27, 2339.

(18) Gladysz, J. A., Hornby, J. L.; Garbe, J. E. J. Org. Chem. 1978, 43, 1204

(19) Thompson, D. P.; Bondjouk, P. J. J. Org. Chem. 1988, 53, 2109.

Preparation of $[\beta - Na_2Fe_{18}S_{30}]^{8-}$ and $[Na_9Fe_{20}Se_{38}]^{9-}$

Table I. Crystallographic Data for
$(n-\mathrm{Bu}_4\mathrm{N})_6\mathrm{Na}_2[\beta-\mathrm{Na}_2\mathrm{Fe}_{18}\mathrm{S}_{30}]$ -8EtOH (A) and
(n-Bu,N), Na, [NaoFeoSeo].15EtOH.2MeCONHPh (B)

	A	В		
formula	$C_{112}H_{264}Fe_{18}N_6Na_4O_8S_{30}$	C ₁₁₈ H ₂₇₀ Fe ₂₀ N _{6.5} Na _{13.5} O ₁₇ Se ₃₈		
formula wt	3882.36	6480.25		
a, Å	17.862 (5)	34.551 (11)		
b. Å	27.383 (11)	26.169 (5)		
c, Å	18.534 (6)	24.244 (8)		
β , deg	91.12 (2)			
V, Å ³	9063 (6)	21920 (11)		
Z	2	4		
d _{caled}	1.42 ^a	1.96 (1.98) ^b		
$(d_{obs}).$ g/cm ³				
space group	<i>P</i> 2 ₁ / <i>n</i>	Pbcn		
T, K	210	170		
μ, cm^{-1}	17.8	70.2		
R (R.). %	9.88 (10.22)	9.93 (9.51)		

^aAccurate density could not be obtained because of solvate composition. ^bDetermined in *n*-hexane/dibromomethane.

SELF-ASSEMBLY OF NANOMETER-SIZED

Fe-S/Se CLUSTERS

Figure 3. Schematic depiction of the cluster self-assembly systems affording compounds containing $[\alpha$ -Na₂Fe₁₈S₃₀]⁸⁻, $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻, and [Na₉Fe₂₀Se₃₈]⁹⁻. The formulas are those of compounds used in X-ray structural determinations.

tained immediately after the ethanol wash step. These were sealed together with a small amount of ethanol in sample holders with use of X-ray transparent polyimide film. Diffraction patterns were found to agree with the simulated patterns from the single-crystal diffraction data, and there was no evidence of other crystalline phases. The diffraction pattern for this compound is distinctly different from that of $(Pr_4N)_6Na_2[\alpha-Na_2Fe_{18}S_{30}]$ ·14MeCN.¹¹

 $(Bu_4N)_{4,5}Na_{4,5}[Na_9Fe_{20}Se_{38}]$ 2PhNHCOMe 12EtOH. A yellow slurry initially containing 3.2 g (20 mmol) of FeCl₃ and 60 mmol of Na-[PhNC(O)Me] (prepared in situ from the reaction of equimolar quantities of acetanilide and sodium metal) was prepared in 110 mL of ethanol at 5 °C. The mixture was allowed to warm to room temperature with stirring. A clear, off-white solution of 3.72 g (40.0 mmol) of Li₂Se in 110 mL of ethanol was added dropwise with vigorous stirring over 10 h to give a dark brownish-green mixture. The mixture was stirred for an additional 12 h and filtered. A solution of 9.67 g (30.0 mmol) of Bu₄NBr in 30 mL of ethanol was added to the dark brown-green filtrate. A black crystalline product slowly formed over a period of 5–10 days. It was collected by filtration, washed thoroughly with ethanol and ether, and dried in vacuo at room temperature for 10 h. A second crop was obtained by slowly concentrating the filtrate to one-half its original volume and

Figure 4. Absorption spectra of $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻ and $[Na_9Fe_{20}Se_{38}]^{9-}$ in acetonitrile, and of their respective precursors $[FeS_2]_n^{\mu-}$ in EtOH/ MeOH (2:1 v/v) and $[FeSe_2]_n^{\mu-}$ in EtOH. Arrows refer to ϵ_M or absorbance scales; absorption maxima are indicated. Spectra of the α - and β -isomers are indistinguishable.

Figure 5. Top and side-on views of the structure of $[\beta$ -Na₂Fe₁₈S₃₀]⁸showing the atom labeling scheme and 50% probability ellipsoids. Atoms Na(1,1') are located within the cluster, and atoms Na(2,2') are positioned above and below the cluster and are weakly bonded to it. Primed and unprimed atoms are related by an imposed inversion center.

carefully layering the solution with 150 mL of 2-propanol. The two crops were combined to afford 4.40 g of product. Analytical results for this material, when compared to the composition deduced from the X-ray structural analysis (Table I). were consistent with an apparent formula for the 12EtOH solvate. Anal. Calcd for $C_{112}H_{252}Fe_{20}N_{6.5}Na_{13.5}O_{14}Se_{38}$: C, 21.21; H, 4.00; Fe. 17.61; N. 1.44; Na, 4.88; Se, 47.31. Found: C, 21.45; H, 4.02; Fe. 17.83; N. 1.68; Na, 4.88; Se, 47.97; Li, 0.0. Calcd Se:Fe atom ratio: 1.90. Found (EDS, chemical analysis): 1.86, 1.88.

X-ray powder diffraction patterns of bulk samples were obtained immediately after washing with ethanol as for compound A. The patterns were found to agree with the simulated powder diffraction pattern from the single-crystal diffraction data, and no line that is not associated with

Na⁺₂[β-Na₂Fe₁₈S₃₀]⁸⁻

Figure 6. Stereoviews of the structures of $[\beta$ -Na₂Fe₁₈S₃₀⁸⁻ (upper) and $[Na_9Fe_{20}Se_{38}]^9$ (lower); a stereoview of $[\alpha$ -Na₂Fe₁₈S₃₀⁸⁻ is given in ref 11.

the simulated pattern was observed. The absorption spectrum of single crystals isomorphous with that used in the X-ray structural determination was identical with that of the bulk sample. Absorption spectrum (acetonitrile): λ_{max} ($\epsilon_{\text{M}} \times 10^{-3}$) 333 (sh. 178), 362 (185), 449 (145), 561 (101), 675 (94) nm.

Both compounds are freely soluble in acetonitrile, DMF, and Me₂SO and slightly soluble in methanol where they are marginally stable. The compounds are more soluble and stable in Na(PhCOMe)/methanol solutions. In these media, $[\beta$ -Na₂Fe₁₈S₃₀]⁸ and $[Na_9Fe_{20}Se_{38}]^{9}$ form dark brown and brownish-green solutions, respectively.

Collection and Reduction of X-ray Data. Diffraction-quality crystals of compounds A and B, designated in Table I, were obtained by the following procedure. Solid Bu₄NBr was placed at the bottom of a tube with an i.d. of 1.5 cm and a length of 40 cm. Ethanol (10 mL) was added, and reaction mixture filtrate was very slowly layered on top of the ethanol until the tube was nearly full. In both cases, the filtrate was that of the reaction mixture 12 h after Li_2S or Li_2Se (and before any quaternary ammonium cation) had been added. The tubes were allowed to stand at room temperature for periods of one month or more. Black crystals, which formed on the sides of the tube, were removed from the mother liquor and immediately coated with Apiezon grease. Data collections were carried out at low temperatures on a Nicolet P3F diffractometer with use of graphite-monochromatized Mo K α radiation. Intensities of three check reflections monitored every 100 reflections over the course of the data collections indicated decays of ca. 10%, which were corrected by processing the data sets with the program XDISK of the SHELXTL program package. Empirical absorption corrections were applied with the program DIFABS of the CRYSTALS package. Crystallographic data are contained in Table I.

Crystals of high diffraction quality of compound A were not obtained. Data were collected on a crystal which, as judged by axial photographs and peak profiles, had a small daughter crystal with diffraction intensities less than 10% those of the parent. Unit cell parameters were obtained from 40 machine-centered reflections ($23^{\circ} \le 2\theta \le 25^{\circ}$). Axial photographs indicated the Laue class 2/m, and the systematic absences h0l(h + l = 2n + 1) and 0k0 (k = 2n + 1) uniquely led to monoclinic space group $P2_1/n$. Unit cell parameters of compound B were obtained from 30 machine-centered reflections ($25^{\circ} \le 2\theta \le 28^{\circ}$). Axial photographs indicated Laue class 2/mmm, and the systematic absences 0kl (k = 2n + 1), h0l (l = 2n + 1), and hk0 (h + k = 2n + 1) are consistent only with orthorhombic space group *Pbcn*. In both cases, simple E statistics also indicated a centrosymmetric space group, and subsequent solutions and refinements of the structures confirmed the assignments.

Structure Solutions and Refinements. Atom scattering factors were taken from a standard source.²⁰ All iron and sulfur or selenium atoms were located by direct methods using the program R-SAPI. All other non-hydrogen atoms were located in successive difference Fourier maps and were refined using CRYSTALS.

(a) Compound A. Isotropic refinement converged at R = 12%. All iron, sulfur, and sodium atoms and all non-hydrogen atoms of two of the three independent Bu₄N⁺ cations were refined anisotropically: all remaining non-hydrogen atoms were described isotropically. Both lengths and distances of Bu₄N⁺²¹ and ethanol solvate molecules²² associated with sodium ions were loosely constrained to their normal values with esd's

⁽²⁰⁾ Cromer, D. T.; Waber, J. T. International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, England, 1974.

of 0.03 Å and 1.0°, respectively. In the final stages of refinement, hydrogen atoms were included at 0.95 Å from bonded carbon atoms with the isotropic thermal parameter 8.0 Å². A final difference Fourier map revealed several peaks in the 0.3-0.8 e⁻/Å³ range that were within bonding distance of certain iron atoms, and are probable artifacts from crystal twinning. The small standard deviations on the positional parameters²³ of the iron and sulfur atoms indicate that the heavy atom portion of the structure is well-defined.

(b) Compound B. Isotropic refinement converged at R = 11%. All iron and selenium atoms were refined anisotropically, and all remaining non-hydrogen atoms isotropically. In the final stages of refinement, bond lengths and distances of Bu₄N⁺ and acetanilide²⁴ and ethanol solvate molecules were constrained and hydrogen atoms included as in the preceding refinement. One special equivalent site of C_2 symmetry was treated by a model based on 1:1 mixed occupancy of Bu₄N⁺ and [Na-(EtOH)₄]⁺. In addition, there is one disordered ethanol solvate molecule and a half-interstitial ethanol molecule. These occupancies were fixed at values determined in earlier refinements. As in the previous case, the small standard deviations on the positional parameters of the iron and selenium atoms indicate that the heavy atom portion of the structure is well-defined.

Other Physical Measurements. All measurements were carried out under strictly anaerobic conditions. Magnetic susceptibility and Mössbauer spectroscopic measurements were performed with the equipment described elsewhere,²⁵ as were absorption spectral, ¹H NMR, and electrochemical determinations.¹⁷ Isomer shifts (⁵⁷Fe) are reported relative to iron metal at room temperature. Electrochemical experiments were performed in DMF solutions with use of a Pt working electrode. a SCE reference electrode, and 0.3 M Bu₄N(BF₄) supporting electrolyte. Powder X-ray diffraction measurements were made with a Rigaku D/ Max-2BX Horizontal XRD System.

Results and Discussion

We have recently devised the cluster self-assembly system with initial mol ratio 3FeCl₃:3Na(PhNCOMe):3.15Li₂S.¹¹ As indicated in Figure 3, the colloidal dark brown-green intermediate first encountered is formulated as the polymeric anion $[FeS_2]_n^n$ whose development is promoted by sodium acetanilate. By controlled crystallization, the intermediate slowly converts to the final product, cyclic $[\alpha - Na_2Fe_{18}S_{30}]^{8-}$. This cluster now carries the " α " designation for, as will be shown, the structure in Figure 1 is not the only one that can be assumed by a cluster of this composition.

Examination of the structure of $[\alpha - Na_2Fe_{18}S_{30}]^{8-}$ clearly reveals that the two encapsulated sodium ions, which exhibit four bonding interactions with sulfur atoms, are significant in stabilizing this cluster of high negative charge. Further, these ions may exercise a template effect inducing the formation of the cyclic structure. These thoughts are supported by a space-filling modeling study and by extended Hückel calculations.¹¹ Indeed, when Na⁺ was replaced with Li⁺ in the synthesis the reaction stopped at the dark green intermediate stage, and the absorption spectrum of the mixture remained unchanged for 2 weeks from that of $[FeS_2]_n^n$, which is shown in Figure 4. The use of K^+ resulted in formation of a dark green intractable solid (probably KFeS₂) and a colorless supernatant. In addition to the critical role of Na⁺, the choice of the precipitating cation R_4N^+ is essential to cluster formation. With Et_4N^+ , insoluble $Et_4N(FeS_2)$ was obtained as a dark green solid; without Pr_4N^+ , the reaction system remained as a dark green mixture and did not achieve significant cluster formation. These findings emphasize the specific requirements of the assembly system and imply that it might be redirected to other cluster products upon change of reaction conditions or of chalcogenide. This possibility, abetted by the foregoing topological considerations, encouraged further investigation of the related cluster assembly

Table II. Selected Interatomic Distances (Å) for [B-Na₂Fe₁₈S₃₀]⁸⁻

ble II. Beleeted II	Iteratonne Dist		1421 0180 301
Fe(1)-Fe(2) Fe(2)-Fe(3) Fe(3)-Fe(5) Fe(5)-Fe(6) Fe(7)-Fe(8) Fe(8)-Fe(9) mean of 11	Fe 2.717 (3) 2.723 (3) 2.678 (3) 2.689 (4) 2.740 (3) 2.742 (3) 2.72 (3)	•Fe Fe(1)-Fe(9') Fe(3)-Fe(4) Fe(4)-Fe(5) Fe(6)-Fe(7) Fe(7)-Fe(9)	2.751 (3) 2.763 (3) 2.771 (3) 2.697 (3) 2.698 (3)
$\begin{array}{c} Fe(1)-S(1) \\ Fe(1)-S(13') \\ Fe(2)-S(2) \\ Fe(3)-S(3) \\ Fe(4)-S(15) \\ Fe(5)-S(7) \\ Fe(6)-S(9) \\ Fe(7)-S(11) \\ Fe(9)-S(11) \\ mean of 18 \end{array}$	Fe-(µ 2.227 (5) 2.236 (6) 2.230 (5) 2.205 (5) 2.205 (5) 2.205 (5) 2.206 (6) 2.214 (5) 2.224 (5) 2.222 (2)	$\begin{array}{l} Fe(1)-S(2)\\ Fe(2)-S(1)\\ Fe(2)-S(3)\\ Fe(3)-S(5)\\ Fe(5)-S(5)\\ Fe(6)-S(7)\\ Fe(7)-S(9)\\ Fe(8)-S(15)\\ Fe(9)-S(13)\\ \end{array}$	2.209 (5) 2.191 (5) 2.218 (5) 2.213 (5) 2.200 (5) 2.197 (6) 2.228 (5) 2.264 (5) 2.180 (6)
$\begin{array}{l} Fe(1)-S(14')\\ Fe(3)-S(4)\\ Fe(4)-S(4)\\ Fe(5)-S(6)\\ Fe(5)-S(8)\\ Fe(6)-S(10)\\ Fe(7)-S(12)\\ Fe(8)-S(12)\\ Fe(9)-S(12)\\ Fe(9)-S(12)\\ mean of 18 \end{array}$	Fe-(µ 2.291 (5) 2.315 (5) 2.327 (5) 2.320 (5) 2.317 (6) 2.332 (5) 2.284 (5) 2.284 (5) 2.296 (4) 2.30 (3)		2.303 (5) 2.285 (5) 2.287 (5) 2.315 (5) 2.260 (5) 2.267 (5) 2.275 (5) 2.352 (4) 2.330 (5)
Na(1)-S(2) Na(1)-S(15) Na(1)-S(15') Na(1)-S(14') Na(1)-S(4)	Na- 2.96 (1) 2.847 (8) 2.984 (8) 3.049 (8) 3.578 (9)	··S Na(2)-S(2) Na(2)-S(12') Na(2)-S(15)	2.89 (1) 3.19 (1) 3.04 (1)
Na(1)-O(1) Na(2)-O(2) Na(2)-O(4)	Na…O(2.24 (2) 2.37 (2) 2.39 (2)	HOEt) Na(1)-O(2) Na(2)-O(3)	2.60 (2) 2.26 (2)
$\begin{array}{c} S(1)-S(2)\\ S(1)-S(4)\\ S(1)-S(14')\\ S(2)-S(4)\\ S(3)-S(4)\\ S(3)-S(6)\\ S(4)-S(5)\\ S(4)-S(15)\\ S(5)-S(7)\\ S(6)-S(7)\\ S(6)-S(7)\\ S(6)-S(10)\\ S(7)-S(8)\\ S(7)-S(10)\\ S(8)-S(11)\\ S(10)-S(11)\\ S(10)-S(11)\\ S(10)-S(11)\\ S(10)-S(14)\\ S(11)-S(12)\\ S(11)-S(14)\\ S(12)-S(14)\\ S(13)-S(14)\\ S(15)-S(15')\\ S(15)-S(15)-S(15')\\ S(15)-S(15)-S(15')\\ S(15)-S(15)-S(15)-S(15')\\ S(15$	S 3.496 (6) 3.732 (6) 3.732 (6) 3.754 (6) 3.690 (7) 3.633 (6) 3.522 (7) 3.730 (6) 3.636 (6) 3.863 (6) 3.801 (6) 3.853 (7) 3.945 (6) 3.752 (6) 3.731 (6) 3.858 (7) 3.754 (7) 3.752 (6) 3.752 (6) 3.752 (6) 3.752 (6) 3.752 (6) 3.752 (6) 3.755 (7) 4.076 (8) 12.39	$ S \\ S(1)-S(3) \\ S(1)-S(13') \\ S(2)-S(13') \\ S(2)-S(15) \\ S(3)-S(5) \\ S(4)-S(5) \\ S(4)-S(5) \\ S(4)-S(8) \\ S(5)-S(6) \\ S(5)-S(8) \\ S(6)-S(18) \\ S(6)-S(18) \\ S(6)-S(12) \\ S(6)-S(12) \\ S(9)-S(10) \\ S(9)-S(12) \\ S(10)-S(12) \\ S(10)-S(12) \\ S(10)-S(12) \\ S(10)-S(13) \\ S(12)-S(13) \\ S(12)-S(13) \\ S(12)-S(15) \\ S(14)-S(15) \\ S(15)-S(14)-S(15) \\ S(15)-S(15) \\ S(15)-S(15$	3.721 (7) 3.759 (7) 3.727 (7) 3.739 (7) 4.041 (6) 3.803 (8) 3.771 (6) 3.596 (6) 3.596 (6) 3.596 (6) 3.792 (7) 3.643 (7) 3.643 (7) 3.783 (7) 3.722 (6) 3.860 (6) 3.783 (7) 3.783 (7) 3.583 (7) 3.759 (6) 3.742 (6) 3.837 (6)
3(1)-5(1')	12.39 Na…	5(9)-5(9') •Na	10.29
Na(1)–Na(1') Na(1)–Na(2')	4.17 (1) 4.16 (1)	Na(1)-Na(2)	3.82 (1)

systems summarized in Figure 3, resulting in the synthesis of two new clusters with unanticipated structures.

 $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻. (a) Cluster Synthesis. The cluster assembly reaction system is set out in Figure 3. Following a procedure very

⁽²¹⁾ Dahlstrom, P.; Zubieta, J.; Neaves, B.; Dilworth, J. R. Cryst. Struct. Commun. 1982, 11, 463.

^{(22) (}a) Hughes, D. L.; Wingfield, J. N. J. Chem. Soc., Chem. Commun. 1984, 408. (b) Sachleben, R. A.; Burns, J. H.; Brown, G. M. Inorg. Chem. 1988, 27, 1787.

⁽²³⁾ See the paragraph at the end of this article concerning supplementary material available.

^{(24) (}a) Brown, C. J. Acta Crystallogr. 1966, 21, 442. (b) Wasserman,
H. J.; Ryan, R. R.; Layne, S. P. Acta Crystallogr. 1985, C41, 783.
(25) Carney, M. J.; Papaefthymiou, G. C.; Whitener, M. A.; Spartalian,

K.; Frankel, R. B.; Holm, R. H. Inorg. Chem. 1988, 27, 346.

Table III. Selected Angles (deg) for $[\beta \cdot Na_2Fe_{18}S_{30}]^{8-1}$					
	Fe···F	eFe			
$E_{1}(0) = E_{1}(1) = E_{2}(2)$	In the Ring	g Perimeter	162 2 (1)		
Fe(9') - Fe(1) - Fe(2) Fe(6) - Fe(5) - Fe(3)	145.8 (1)	Fe(3) - Fe(2) - Fe(1) Fe(5) - Fe(3) - Fe(2)	103.3(1) 1475(1)		
Fe(7) - Fe(6) - Fe(5)	149.0 (1)	Fe(9) - Fe(7) - Fe(6)	144.3 (1)		
Fe(7) - Fe(9) - Fe(1')	150.4 (1)				
	In the Fe	₃ S ₄ Units			
Fe(5)-Fe(3)-Fe(4)	61.20 (9)	Fe(5)-Fe(4)-Fe(3)	57.88 (8)		
Fe(4) - Fe(5) - Fe(3) Fe(9) - Fe(7) - Fe(8)	60.92 (8) 60.55 (8)	Fe(9) - Fe(8) - Fe(7) Fe(8) - Fe(9) - Fe(7)	58.98 (8) 60.47 (8)		
	Eleon	ubero	00.47 (0)		
Fe(4) - Fe(3) - Fe(2)	86.36 (9)	Fe(6)-Fe(5)-Fe(4)	84.9 (1)		
Fe(8)-Fe(7)-Fe(6)	83.9 (1)	Fe(8)-Fe(9)-Fe(1')	90.33 (9)		
	S-F	`e−S			
	$(\mu_2 - S) - F$	$\tilde{e} - (\mu_2 - S)$			
S(2)-Fe(1)-S(1)	104.0 (2)	S(13') - Fe(1) - S(1)	114.8 (2)		
S(13')-Fe(1)-S(1)	114.8 (2)	S(2)-Fe(2)-S(1)	104.5 (2)		
S(3) - Fe(2) - S(1) S(5) - Fe(3) - S(3)	115.1(2) 1200(2)	S(3) - Fe(2) - S(2) S(7) - Fe(5) - S(5)	113.8(2) 119.3(2)		
S(9) - Fe(6) - S(7)	118.8(2)	S(11) - Fe(7) - S(9)	120.6 (2)		
S(13)-Fe(9)-S(11)	118.6 (2)				
	(µ₃-S)−F	$e^{-(\mu_2-S)}$			
S(14')-Fe(1)-S(1)	112.4 (2)	S(14')-Fe(1)-S(2)	107.7 (2)		
S(14') - Fe(1) - S(13') S(4) - Fe(2) - S(2)	103.5(2) 109.0(2)	S(4) - Fe(2) - S(1) S(4) - Fe(2) - S(3)	112.2(2) 102.3(2)		
S(4) - Fe(3) - S(3)	103.2 (2)	S(5) - Fe(3) - S(4)	102.3(2) 112.8(2)		
S(6) - Fe(3) - S(3)	113.3 (2)	S(6) - Fe(3) - S(5)	102.3 (2)		
S(15)-Fe(4)-S(4)	114.7 (2)	S(15)-Fe(4)-S(6)	115.1(2)		
S(13) - Fe(4) - S(6) S(7) - Fe(5) - S(6)	115.5(2) 116.7(2)	S(8) - Fe(5) - S(5)	101.0(2) 114.2(2)		
S(8)-Fe(5)-S(7)	101.0 (2)	S(8) - Fe(6) - S(7)	103.1 (2)		
S(9)-Fe(6)-S(8)	112.9 (2)	S(10) - Fe(6) - S(7)	111.8 (2)		
S(10) - Fe(6) - S(9) S(11) - Fe(7) - S(10)	101.5(2) 113.8(2)	S(10) - Fe(7) - S(9) S(12) - Fe(7) - S(9)	102.9(2) 1140(2)		
S(12) - Fe(7) - S(11)	100.9 (2)	S(12) - Fe(8) - S(10)	121.4(2)		
S(15)-Fe(8)-S(12)	111.4 (2)	S(15)-Fe(8)-S(14)	112.4 (2)		
S(12)-Fe(9)-S(11) S(14) = Fe(9)-S(11)	100.2(2)	S(13)-Fe(9)-S(12) S(14)-Fe(9)-S(12)	114.2 (2)		
3(14)-re(9)-3(11)	114.2 (2)	3(14) - re(3) - 3(13)	104.0 (2)		
S(6) = Fe(3) = S(4)	$(\mu_3-S)-F$ 1044(2)	$e^{-(\mu_3-S)}$ S(6)-Fe(4)-S(4)	1040(2)		
S(8) - Fe(4) - S(4)	101.5(2)	S(8) - Fe(4) - S(6)	104.7 (2)		
S(8)-Fe(5)-S(6)	103.6 (2)	S(10)-Fe(6)-S(8)	108.7 (2)		
S(12)-Fe(7)-S(10) S(14)-Fe(8)-S(10)	103.9 (2)	S(12)-Fe(8)-S(10) S(14)-Fe(8)-S(12)	104.3 (2)		
S(14) - Fe(8) - S(10) S(14) - Fe(9) - S(12)	100.3(2) 105.2(2)	3(14)-re(0)-3(12)	105.5 (2)		
	E	. F.			
	гс-2 Бе_(и	S)-Fe			
Fe(2)-S(1)-Fe(1)	75.9(2)	Fe(2)-S(2)-Fe(1)	75.5 (2)		
Fe(3)-S(3)-Fe(2)	76.6 (2)	Fe(5)-S(5)-Fe(3)	74.7 (2)		
Fe(6)-S(7)-Fe(5)	75.3 (2)	Fe(7)-S(9)-Fe(6)	74.9 (2)		
Fe(9) - S(11) - Fe(7) Fe(8) - S(15) - Fe(4)	74.9 (2) 95 3 (2)	Fe(9) - S(13) - Fe(1')	//.1 (2)		
10(0) 5(15) 10(4)	55.5 (2) Fo (S)-Fa			
Fe(3)-S(4)-Fe(2)	72.3(2)	Fe(4)-S(4)-Fe(3)	73.1 (1)		
Fe(4)-S(6)-Fe(3)	74.3 (Ž)	Fe(5)-S(6)-Fe(3)	71.1 (1)		
Fe(5)-S(6)-Fe(4)	73.9 (2)	Fe(5)-S(8)-Fe(4)	73.5 (2)		
re(0) - S(0) - re(0) Fe(8) - S(10) - Fe(7)	74.2 (2)	Fe(7) = S(10) = Fe(6) Fe(8) = S(12) = Fe(7)	71.8 (2) 74.1 (2)		
Fe(9)-S(12)-Fe(7)	72.2 (1)	Fe(9)-S(12)-Fe(8)	73.9 (1)		
Fe(9)-S(14)-Fe(1')	73.1 (2)	Fe(9)-S(14)-Fe(8)	71.7 (1)		
re(4) - S(4) - re(2) Fe(6) - S(8) - Fe(4)	108.3(2) 107.3(2)	Fe(8) = S(10) = Fe(6) Fe(8) = S(14) = Fe(1')	104.2 (2)		

similar to that for the preparation of $(Pr_4N)_6Na_2[\alpha-Na_2Fe_{18}S_{30}]$,¹¹ but with replacement of Pr_4N^+ with Bu_4N^+ and MeOH/EtOHsolvent with pure EtOH to cope with the higher solubility of the product. the black crystalline compound $(Bu_4N)_6Na_4Fe_{18}S_{30}$ was isolated in 70–75% yield. Cluster assembly presumably follows the same pathway as that for $[\alpha-Na_2Fe_{18}S_{30}]^{8^-}$. This is indicated by identical absorption spectra for the reaction mixtures. in which $[FeS_2]_n^{n-}$ is the spectroscopically detected intermediate.¹¹ The final product is identified by its absorption spectrum in Figure 4, which is indistinguishable from that of $[\alpha-Na_2Fe_{18}S_{30}]^{8^-}$.

Table IV. Displacements (Å) from the Mean Plane Fe₉(1-9) for $[\beta$ -Na₂Fe₁₈S₃₀)⁸⁻

Fe(1)	-0.188	S(1)	-1.449	_
Fe(2)	-0.265	S(2)	0.929	
Fe(3)	0.203	S(3)	0.959	
Fe(4)	-0.363	S(4)	-1.586	
Fe(5)	0.282	S(5)	-0.309	
Fe(6)	0.028	S(6)	1.641	
Fe(7)	-0.184	S(7)	1.077	
Fe(8)	0.221	S(8)	-1.444	
Fe(9)	-0.246	S(9)	-0.917	
		S(10)	1.468	
Na(1)	-1.349	S(11)	0.393	
Na(2)	-2.609	S(12)	-1.685	
		S(13)	-1.095	
		S(14)	1.438	
		S(15)	-0.221	
				_

Table V. Comparative Structural Features of the α - and β -Isomers of $[Na_2Fe_{18}S_{30}]^{8-}$

	α^a	β^{b}		
imposed sym	C _f	$\overline{C_i}$		
$l \times w \times h, A$	$13.32 \times 15.98 \times 3.30$	$12.39 \times 16.29 \times 3.33^{\circ}$		
Fe ₂ S ₂ rhombs	24	22		
shared Fe vertices	6	6		
shared edges	24	20		
μ ₂ -S	20	18		
μ ₃ -S	8	12		
μ ₄ -S	2	0		
dev from Fe(1-9)				
plane, Å				
Fe	-0.15 to $+0.14$	-0.36 to +0.28		
S	-1.55 to $+1.65$	-1.69 to +1.64		
Na(1)	-0.15	-1.35		
Na(2)	-2.66	-2.61		

^aReference 11. ^bThis work. ^cHeight (thickness) = S(6) + S(12) displacements (Table IV).

(b) Structure. As evidenced from microscopic examination, the compound $(Bu_4N)_6Na_4Fe_{18}S_{30}$ °8EtOH is not isomorphous with previously isolated triclinic $(Pr_4N)_6Na_4Fe_{18}S_{30}$ ·14MeCN.¹¹ It crystallizes in monoclinic space group $P2_1/n$ with one-half anion $[\beta$ -Na₂Fe₁₈S₃₀]⁸-, three Bu₄N⁺, two Na⁺. and four EtOH solvate molecules in the asymmetric unit. The structure of the anion as viewed from top and side-on perspectives is presented in Figure 5 and a stereoview is shown in Figure 6. Metric data are collected in Tables II-IV. It is immediately apparent that the anion is also a cyclic cluster that exhibits a pronounced similarity to, but is not identical with, $[\alpha$ -Na₂Fe₁₈S₃₀]⁸⁻. The cluster $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻ is a structural isomer of $[\alpha$ -

 $Na_2Fe_{18}S_{30}$ ⁸⁻ and, as such, shares common features of the overall molecular configuration. It has a centrosymmetric cyclic topology of toroidal shape. In this disc-like cluster, all iron atoms are in distorted tetrahedral FeS₄ units organized into 22 non-planar rhombs with which the cluster is built up by a combination of vertex- and edge-sharing. There are no terminal ligands. Two monosolvated sodium ions Na(1,1') are contained within the sulfide-rich interior of the cluster, each with four Na-S interactions in the range 2.85–3.05 Å. As its α -isomer, the cluster may be thought of as an inorganic crown thiaether. The Fe(1-9) plane is perfect to within 0.36 Å (Table IV). Two trisolvated sodium ions Na(2,2') are more loosely associated with the cluster through three Na-S interactions at 2.89-3.19 Å at positions 2.61 Å above and below the Fe(1-9) plane. These atoms are not considered an integral part of the cluster. In the crystal, the clusters are packed in parallel layers intersecting at an angle of 65.9°, with the interlayer species filled by Bu_4N^+ cations and ethanol solvate molecules. Distortions owing to the presence of sodium ions appear to be chiefly responsible for symmetry reduction of the cluster from idealized C_{2h} to crystallographically imposed C_i symmetry.

Structural features of the α - and β -isomers of $[Na_2Fe_{18}S_{30}]^{s}$ are compared in Table V. In contrast to the α -isomer, which is conceptually constructed by sequential connection of two linear Fe_3S_4 and two Fe_6S_9 units, the β -isomer can be considered to arise

Figure 7. Comparison of Fe₃S₃ ring conformations and dimensions of the skew-boat ring in $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻ and the chair-like rings in the prismane cluster [Fe₆S₆Cl₆]^{3-16a} and the basket cluster Fe₆S₆(PBu₃)₄Cl₂.¹⁷ The lower rings are projections on Fe₃S₃ mean planes.

Table VI. Mössbauer Spectroscopic Properties of $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻. $[\alpha$ -Na₂Fe₁₈S₃₀]⁸⁻, and $[Na_9Fe_{20}Se_{38}]^{9-}$

cluster	<i>T</i> . K	δ.ª mm/s	ΔE _Q . mm/s	Γ. ^b mm/s	% abs ^c
$[\beta - Na_2 Fe_{18}S_{30}]^{8-1}$	4.2	0.33	0.82	0.42	81
		0.53	1.61	0.42	19
	80	0.31	0,81	0.48	84
		0.50	1.52	0.48	16
$[\alpha - Na_2 Fe_{18}S_{30}]^{8-d}$	4.2	0.30	0.81	0.37	83
		0.46	1.49	0,37	17
[Na ₉ Fe ₂₀ Se ₃₈] ⁹ −	4.2	0.38	0.58	0.34	66
		0.43	1.12	0.34	34
	80	0.37	0.58	0.36	68
		0.42	1,10	0.36	32
MeCN soln	4.2	0.37	0.55	0.34	64
		0,44	1,03	0.34	36
	80	0.37	0,54	0.36	68
		0.44	1.03	0.36	32

^aRelative to Fe metal at room temperature. ^bLine width. ^cPercent of total absorption. ^dReference 11.

from a combination of two Fe_2S_2 , four cuboidal Fe_3S_4 , and two tetrahedral FeS_4 units. In both isomers, component units have been structurally defined in discrete clusters. Thus, the Fe₂-(1,2)-S₂(1,2) unit closely resembles the cluster core of $[Fe_2S_2L_4]^{2-26}$ Edge fusion of three rhombs generates the cuboidal unit $Fe_3(3-5)S_4(4-6,8)$, which is known as a protein-bound cluster¹⁴ but has yet to be synthesized as the core of a discrete molecule. The two units are bridged through μ_2 -S(3) and μ_3 -S(4). This Fe_3S_4 unit is bridged to another, $Fe_3(7-9)S_4(7,9-11)$, through tetrahedral Fe(6)S₄(7-10) and μ_2 -S(15). The doubly-bridging atoms S(3,7,15) are not part of the constituent Fe_2S_2 and Fe_3S_4 units. Repetition of this pattern produces a ring structure. Adjacent Fe_3S_4 units are disposed such that the unoccupied positions of the site-voided cubane are on opposite sides of the Fe(1-9)plane. In the α -isomer (Figure 1), the four Fe₃S₄ units are contained within two Fe_6S_9 fragments, one of which is $Fe_6(3-$ 8)S₉(3,5-12). Here the voided sites of adjacent units are on the same side of the Fe(1-9) plane. Consequently, the idealized C_2 axis of the β -isomer passes along the long (major) axis of the disc whereas in the α -isomer it is along the short (minor) axis. Despite the very similar atom spatial arrangements, the two molecules are not superimposable because the ratio major axis/minor axis is 1.20 for the α -isomer and 1.31 for the β -isomer.

Unlike the α -isomer (Figure 1), which is built up entirely from vertex- and edge-shared Fe₂S₂ rhombs, the β -isomer contains the atoms S(15,15') which do not belong to any rhombs. Consequently, the structure accommodates two Fe₃S₃ rings and is the second example of a Fe-S cluster not built up entirely by the sharing of Fe₂S₂ rhombs. The basket clusters Fe₆S₆(PR₃)₄L₂ (L = RS⁻, halide)^{13,17} and [Fe₆S₆(PEt₃)₆]⁺²⁷ contain such rings. The

Figure 8. Temperature dependence of the molar magnetic susceptibilities (corrected for diamagnetism) of $[\beta$ -Na₂Fe₁₈S₃₀]⁸ (lower) and $[Na_9Fe_{20}Se_{38}]^{9}$ (upper): values of μ_{Fe} (μ_B) at selected temperatures are indicated.

prismane clusters $[Fe_6S_6L_6]^{3-}$ (L = RO⁻, RS⁻, halide)¹⁶ also possess Fe_3S_3 rings, but all atoms therein are included in rhombs. The structures of these six-membered rings are compared in Figure 7, from which it is seen that the ring in $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻ has the skew-boat conformation. This conformation and ring dimensions are far closer to those of the prismane cluster than to those of the irregular ring of the basket cluster. It appears unlikely that the ring conformation will permit a reaction analogous to the capping of prismane faces by the formation of three M-S bonds, as has been accomplished.²⁸ A more likely prospect is the bridging of S(15.15'), separated by 4.08 Å, by metal ions.

(c) Electronic Features. The Mössbauer spectra of $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻ was examined in zero-field at 4.2-80 K and under a longitudinally applied field of 80 kOe at 4.2 K. Isomer shifts (δ) and quadrupole splittings (ΔE_Q) are contained in Table VI. The spectra (not shown) are virtually the same as those for [α -Na₂Fe₁₈S₃₀]^{8-,11} as would be expected from the isomeric structures and the same mean iron oxidation state. They show two apparent overlapping quadrupole doublets, with the minority doublet appearing as a shoulder on the high velocity side. No magnetic hyperfine structure was observed in zero-field, and the magnetically perturbed spectrum consisted of a typical four-line pattern for a diamagnetic species in a longitudinal field.

 $[\beta - Na_2 Fe_{18}S_{30}]^{8-}$ is a mixed-valence cluster formally containing 14Fe(III) + 4Fe(II) and having nine crystallographically distinct iron sites. Subspectra for these sites are not resolved, and individual Fe(II) sites, for which $\delta \approx 0.7$ mm/s and $\Delta E_0 \approx 3$ mm/s are expected.²⁹ are not observed. Spectral parameters based on a two-site fit are given in Table VI together with those for the α -isomer at 4.2 K. With use of the empirical relationship between isomer shifts and oxidation states for tetrahedral FeS_4 sites,³⁰ the majority doublet corresponds to the oxidation state 2.85+ and the minority doublet to 2.39+. The weighted average of 2.76+ agrees well with the value of 2.78+ from the chemical formula. While the cluster is electronically delocalized, the electronic distribution is not uniform. We observe that the sites $Fe(4.8)(\mu_2-S)(\mu_3-S)_3$ (Figure 4) have the highest bridging multiplicity and the longest mean bond lengths (2.29-2.30 Å). They offer the least electron-rich coordination environment and would be most hospitable to the Fe(II) state. The sites $Fe(1,2)(\mu_2-S)_3(\mu_3-S)$, on the other hand, have the lowest bridging multiplicity and the shortest mean bond distances (2.24 Å), and should be most effective in localizing

⁽²⁶⁾ Berg, J. M.; Holm, R. H. In *Iron-Sulfur Proteins*; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1982; Chapter 1.

⁽²⁷⁾ Snyder, B. S.; Holm, R. H. Inorg. Chem. 1990, 29, 274.

⁽²⁸⁾ Al-Ahmad, S. A.; Salifoglou, A.; Kanatzidis, M. G.; Dunham, W. R.; Coucouvanis, D. *Inorg. Chem.* **1990**, *29*, 927 and references therein. (29) Lane, R. W.; Ibers, J. A.; Frankel, R. B.; Papaefthymiou, G. C.;

⁽²⁹⁾ Lane, R. W.; Ibers, J. A.; Frankel, R. B.; Papaeithymiou, G. C.; Holm, R. H. J. Am. Chem. Soc. 1977, 99, 84.

⁽³⁰⁾ Christou, G.; Mascharak, P. K.; Armstrong, W. H.; Papaefthymiou, G. C.; Frankel, R. B.; Holm, R. H. J. Am. Chem. Soc. 1982, 104, 2820.

Figure 9. Two views of the structure of [Na₉Fe₂₀Se₃₈]⁹ showing 70% probability ellipsoids (Fe and Se atoms) and the atom-labeling scheme. Primed and unprimed atoms are related by an imposed C_2 axis passing through Na(0) and perpendicular to the mean plane of the $Fe_2(3,3')$ - $Se_2(6.6')$ rhomb. The two views differ by a 90° rotation around the idealized C_3 axis which contains Fe(10,10').

oxidation states near Fe(III). The remaining sites are intermediate between these two extremes. The patterns of electron delocalization of the two isomers are very similar. The 14 iron sites in the molecular periphery tend toward Fe(III) while the four sites in the interior approach Fe(II).

The temperature dependence of the magnetic susceptibility of $[\beta-Na_2Fe_{18}S_{30}]^{8-}$, plotted in Figure 8, is indicative of antiferromagnetism and a singlet ground state and is consistent with the Mössbauer results. The magnetic moment per iron atom at 250 K, $\mu_{Fe} = 1.51 \ \mu_B$, is somewhat larger than that of the α -isomer at 267 K (1.28 $\mu_{\rm B}$) and is comparable with room temperature moments for $[Fe_2S_2(SR)_4]^{2-}$ (1.4 μ_B^{31}), $[Fe_4S_4(SR)_4]^{2-}$ (1.1 μ_B^{32}), and $[Fe_6S_9(SR)_2]^{4-}$ (1.1-1.2 μ_B^{33}). Both cyclic clusters, as all other iron-sulfur clusters, are overall antiferromagnetically coupled.

(d) Redox. Cyclic voltammograms of $[\beta-Na_2Fe_{18}S_{30}]^{8-}$ (not shown) reveal redox properties very similar to, but distinguishable from, those of the α -isomer.¹¹ Two oxidations are observed at $E_{1/2}$ = -0.67 V (quasireversible) and -0.43 V (chemically reversible), compared to -0.62 and -0.37 V for the α -isomer. These steps are followed at more positive potentials by multielectron oxidations, a common behavior of Fe-S/Se clusters. One or two irreversible reductions are observed at $E_{pc} = -1.5$ to -1.6 V and a coupled anodic step occurs at $E_{pa} = -1.27$ V. For $[\alpha$ -

Table VII.	Selected]	Interatomic Dist	ances (Å) for [Na	Fe ₂₀ Se ₃₈] ^{9-a}
		Fe	·Fe	
		In Fee(un-S	e), Chain	
Fe(1)	-Fe(2)	2.755 (7)	Fe(2) - Fe(3)	2.855 (7)
Fe(4)	-Fe(5)	2.784(7)	Fe(5) - Fe(6)	2.789 (7)
Fe(7)	-Fe(8)	2.744 (7)	Fe(8) - Fe(9)	2.843 (7)
mean		2.76 (2)	mean	2.83 (3)
Ea(2)	-Fa(2/)	2.79 (1)		
Fe(3)	-rc(3)	2.76(1)		
re(0)	-re(9)	2.766 (0)		
mean		2.700 (9)	<u> </u>	
-		n $\operatorname{Fe}_4(\mu_2 \operatorname{-Se})_3(\mu_4)$	-Se) Bridgehead	
F	e(1)-Fe(1)	0) 2.86	4(7)	
F	e(4) - Fe(1)	0) 2.88	7 (8)	
F	e(7)-Fe(1	0) 2.86	9(7)	
m	ean	2.87	3 (10)	
		Fe-(µ	(-Se)	
		In Fe (u.s.	e) Chain	
Fe(1)-	-Se(2)	2.361 (7)	Fe(2)-Se(2)	2 369 (7)
Fe(1)-	-Se(3)	2.335 (7)	Fe(2) - Se(3)	2.372(7)
Fe(4)-	-Se(8)	2 380 (7)	Fe(5) - Se(8)	2 380 (6)
Fe(4)-	-Se(9)	2324(7)	Fe(5) - Se(9)	2,376 (7)
Fe(7)-	-Se(14)	2.349 (6)	Fe(8) - Se(14)	2.362 (7)
Fe(7)-	-Se(15)	2.339 (7)	Fe(8) - Se(15)	2 369 (6)
mean	56(15)	2.35(2)	mean	2 371 (6)
E ₂ (2)	8-(4)	2.35(2)	E-(2) E-(5)	2.371(0)
FC(2)-	-30(4) -Se(10)	2.340 (0)	FC(2) = SC(3) Fc(5) = Sc(11)	2,430 (0)
FC(3)-	-30(10) -Se(17)	2.333 (1)	Fe(0) = Se(11)	2.420 (7)
re(o)-	-3c(17)	2.337 (1)	rc(8)-3C(10)	2.377 (1) 2.42 (1)
mean	a (1)	2.343 (10)		2.42 (2)
Fe(3)-	-Se(4)	2.347 (6)	re(3)-Se(5)	2.422 (6)
Fe(6)-	-Se(10)	2.329 (7)	Fe(6) - Se(11)	2.374 (7)
Fe(9)-	-Se(17)	2.364 (6)	Fe(9) - Se(16)	2.383 (7)
mean		2.345 (14)	mean	2.39 (2)
Fe(3)-	-Se(6)	2.371 (8)		
Fe(3)-	-Se(6')	2.371 (8)		
Fe(6)-	-Se(12)	2.384 (7)		
Fe(6)-	-Se(18')	2.407 (6)		
Fe(9)-	-Se(12')	2.365 (7)		
Fe(9)-	-Se(18)	2.351 (6)		
mean		2.38 (2)		
		Fe-(u	Se)	
	т	- E- (E-) (So) Bridgebood	
$\mathbf{E}_{\mathbf{r}}(1)$	E ₂ (1)	n $re_4(\mu_2-Se)_3(\mu_4$	-Se) Bridgenead	2 276 (7)
Fe(1)-	-Se(1)	2.333 (0)	Fe(10) - Se(1)	2.370 (7)
Fe(4)-	-3c(7) Se(12)	2.313 (0)	Fe(10) - Se(7)	2.380 (7)
Fe(/)-	-Se(13)	2.290 (7)	re(10)-Se(13)	2.330 (7)
mean		2.32 (2)	mean	2.371 (10)
		F c -(μ	4-Se)	
	I	n Fe ₄ (μ_2 -Se) ₃ (μ_4	-Se) Bridgehead	
Fe(1)-	-Se(19)	2.542 (6)	Fe(10)-Se(19)	2.439 (6)
Fe(4)-	-Se(19)	2.517 (7)		
Fe(7)-	-Se(19)	2.522 (6)		
mean	()	2.527 (11)		
-		6- NT	(E+OU)	
Sa(16	$N_{\rm e}(0)$	2 00 (1)	(E(OH)) So(5) No(3)	2 14 (1)
Se(10 S-(2)	-Na(1)	3.00(1)	$S_{\alpha}(5) = INa(5)$ $S_{\alpha}(5) = Na(2)$	3.14(1)
Se(3)	-Na(1)	2.95 (2)	Se(3) = Na(3) Se(4) = Na(3)	3.09(1)
30(3)-	-1Na(1)	2.70 (2)	$S_{\alpha}(0) = Na(3)$ $S_{\alpha}(0) = Na(4)$	2.77 (1) 2.01 (2)
Sc(1)	J = Na(1)	2.73 (2)	Se(1) = Na(4) Se(1) = Na(4)	2.71 (2)
50(10	9-18a(1) -Na(2)	3.03 (2) 2 87 (2)	Se(11)-INA(4) Se(14)-Na(4)	2.70 (2)
Se(2)	-Na(2)	2.67 (2)	Se(14) = Na(4) Se(16) = Na(4)	2.93 (2)
Se(3)	-Na(2)	2.05 (2)	Se(10) = Iva(4) Se(6) = Na(7)	2.95 (2)
Se(0)	-iNa(2)	2.09 (2)	Se(0) = Na(7) Se(10) = Na(6)	2.00 (0)
Se(11) $\operatorname{Na}(2)$	2.74 (2)	Se(10) = Na(0) Se(10) = Na(6)	3.40(1)
36(19)=14a(4)	3.27 (2)	Se(10)-14a(0)	5.51 (1)
		Se•••Na (Me	C(O)NHPh)	
Se(1)	-Na(5)	3.00 (2)	Se(2)-Na(5)	3.14 (2)
Se(7)	-Na(5)	3.05 (2)	Se(8)-Na(5)	3.12 (1)
		Na.	•Na	
Na(0))-Na(4)	3.51 (1)	Na(0)-Na(4)	3.51 (1)
Na(1)	-Na(3)	3.71 (2)	Na(2)-Na(3)	3.45 (2)
Na(6)	-Na(6')	3.52 (3)	Na(3)-Na(3')	4.60 (2)
		N- 0		• /
N-(A)		2 20 (4)	$N_{\alpha}(1) = O(1)$	2 10 (2)
Na(0))=−0(4) _0(1)	2.37 (4) 2 12 (2)	$N_{2}(1) = O(1)$	2.40 (3)
Na(2)		2.42 (3)	$N_{\alpha}(J) = O(1)$	2.37 (3)
Na(3))-O(2))-O(6)	2.33 (3)	$N_{2}(4) = O(4)$	2.70 (3)
Na(6))(0) \(7)	2.40 (3)	$N_{2}(0) = O(0)$	2.32 (3)
Na(0)		2.43 (3) 2.58 (6)	$N_{a}(7) = O(0')$	2.50 (5)
Na(7)	-0(10)	2.33 (0)	$N_{a}(7) = O(10')$	2.33 (7)
114(/)	, (10)	2.00 (7)		(·)
		Na…O (Me	C(O)NHPh)	
Na(5)	-O(5)	2.18 (3)		

^a The data are organized under idealized D_{3h} symmetry.

⁽³¹⁾ Gillum, W. O.; Frankel, R. B.; Foner, S.; Holm, R. H. Inorg. Chem. 1976, 15, 1095.

⁽³²⁾ Papaefthymiou, G. C.; Laskowski, E. J.; Frota-Pessoa, S.; Frankel,
R. B.; Holm, R, H. Inorg. Chem. 1982, 21, 1723.
(33) Strasdeit, H.; Krebs, B.; Henkel, G. Inorg. Chem. 1984, 23, 1816.

Figure 10. Left: structure of $[Na_9Fe_{20}Se_{38}]^{\diamond}$. Right: an enlarged view of an Fe₉Se₁₄ fragment, independent under idealized D_{3h} symmetry, showing the three bridgehead rhombs fused along a common edge and the attachment of one of the three Fe₆Se₁₀ chains to the bridgehead. Sodium ions are omitted for clarity. The locations of several D_{3h} symmetry elements are indicated: interatomic distances are averaged under this symmetry.

 $Na_2Fe_{18}S_{30}^{8-}$, reductions occur in the same range but the oxidation feature occurs at -0.97 V. The reduction sites are perhaps the cuboidal Fe_3S_4 fragments which, as just noted, may be suitable for the stabilization of Fe(II).

 $[Na_{9}Fe_{20}Se_{38}]^{\circ}$. (a) Cluster Synthesis. Replacement of Li₂S with Li₂Se in the assembly system of Figure 3 results in a brown solution with a broad, featureless absorption spectrum of unknown origin when $n \le 1.2$ and a dark brownish-green mixture when 1.2 < n < 2.1. The absorption spectrum of the latter, with its four bands at 353, 446, 558, and 673 nm (Figure 3), is a red-shifted version of the spectrum of [FeS₂]_nⁿ⁻ (335, 425, 530, 618 nm); its intensity increases when the number of equivalents of Li₂Se is increased above n = 1.2. Accordingly, this spectrum is assigned to the polymer [FeSe₂]_nⁿ⁻. Addition of the precipitant Bu₄N⁺ caused slow conversion of the intermediate to the final product, which was isolated as a black crystalline product in 70% yield. The absorption spectrum of [Na₂Fe₁₈S₃₀]⁸⁻, suggesting a different structure.

(b) Structure. Compound B in Table I crystallizes in orthorhombic space group *Pbcn* with one-half anion $[Na_9Fe_{20}Se_{38}]^9$. two and one-quarter Bu_4N^+ , two and one-quarter Na⁺, one acetanilide, and seven and one-half ethanol molecules in the asymmetric unit. The nonstoichiometric formula arises from a half interstitial ethanol molecule and a model based on a 1:1 occupancy. That ethanol and acetanilide are present as protonated molecules was inferred from bond distances and angles to nearby Na⁺ cations. These molecules and the quaternary ammonium cations (with the exception of a few disordered carbon atoms) were generally well-ordered and unexceptional and are not considered further. The composition of compound B is further supported by analysis for all elements except oxygen and the Se:Fe atom ratio by EDS. Several views of the cluster structure are presented in Figures 9 and 10 and a stereoview is given in Figure 6. Metric data are collected in Tables VII-IX.

As the α and β forms of $[Na_2Fe_{18}S_{30}]^{8-}$, the cluster $[Na_9Fe_{20}Se_{38}]^9$ possesses two remarkable structural features. It contains no terminal ligands, thus necessitating a cyclic Fe-Se framework. But unlike the monocyclic isomers, $[Na_9Fe_{20}Se_{38}]^9$ is a *bicyclic* cluster of ellipsoidal shape. It is the only bicyclic cluster. Within the cluster cavity are encapsulated nine sodium ions Na(0-4,1'-4'), which are additionally coordinated to a total of eight ethanol molecules. The cluster has a prolated ellipsoidal topology with dimensions 11.2 × 17.4 Å, placing it in the na-

nometer size range. The minor axis is twice the centroid-Se(6) distance and the major axis is the Se(1)-Se(1') distance. The cluster has imposed C_2 symmetry, with the 2-fold axis passing through Na(0) and perpendicular to the mean plane of rhomb Fe₂(3,3')Se₂(6,6'), and, as will be seen, approaches idealized D_{3h} symmetry.

The structure is built up entirely from 21 Fe₂Se₂ rhombs, 15 of which share iron vertices to form three separate but essentially equivalent $Fe_6(\mu_2 - Se)_{10}$ chains. The cluster has 36 μ_2 -Se atoms, 2 μ_4 -Se atoms, 15 vertex-sharing Fe₂Se₂ rhombs, and 6 edgesharing rhombs, with all iron atoms in distorted tetrahedral FeSe₄ sites. The chains contain the atoms Fe(1-3,3'-1'). Fe(7-9.6'-4'). and Fe(4-6,9'-7') and are positioned roughly parallel to an idealized C_3 axis that contains Fe(10,10'). These chains are particularly apparent when sodium ions are removed from the structure (Figure 10). The terminal atoms Fe(1,4.7) at one end are included in bridgehead rhombs by three additional μ_2 -Se-(1,7,13) bridges which also connect to Fe(10). Atoms Fe(1,4,7,10) are bridged by μ_4 -Se(19). In this way, three bridgehead rhombs $Fe_2(7,10)Se_2(13,19)$, $Fe_2(1,10)Se_2(1,19)$, and $Fe_2(4,10)Se_2(7,19)$ are formed and share the common edge Fe(10)-Se(19). A symmetry-related bridgehead unit completes the structure on the opposite end.

The nature of the Fe_6S_{10} chains is described in terms of the independent atoms of one of them. With reference to Table IX and Figure 10, the plane containing atoms Fe(1-3) and bridgehead atom Fe(10) is perfect to ± 0.122 Å. The atoms Se(1.19) in the bridgehead and Se(4,5) in the chain show comparably small deviations from this plane. Above and below the Fe(1-3.10) plane, sandwiching it at a distance of 2.1 Å, are two uneven planes of atoms 1.1 Å thick. These contain the bridgehead atoms Fe(4,7). four interior sodium atoms, and nine selenium atoms, three of which, Se(2,3,6), are from Fe_2Se_2 rhombs in the chain that are perpendicular to the Fe(1-3,10) plane. The other six selenium atoms are from the other two chains. The displacements of atoms in the sandwich layers and of other atoms in Table IX convey the size of the cluster cavity defined by the chains and the separation of chains. The two related planes from other chains, Fe(4-6,10)and Fe(7-9,10), intersect the first with dihedral angles of 120.0°.

A cluster fragment $\text{Fe}_9\text{Se}_{14}$, independent under idealized D_{3h} symmetry, is shown in enlarged form in Figure 10 in order to make clear the way in which the chains are anchored in the bridgehead region. The close approach to idealized D_{3h} symmetry is emphasized by the minor variation of two of the three dihedral angles

Table VIII. Selected Bond Angles (deg) for [Na₉Fe₂₀Se₃₈]^{9-a}

$\begin{split} & \operatorname{Fe}_{3} - \operatorname{Fe}(2) - \operatorname{Fe}(1) & \operatorname{Id}_{4} (2) & \operatorname{Fe}(3) - \operatorname{Fe}(3) - \operatorname{Fe}(2) & \operatorname{Id}_{1} (3) \\ & \operatorname{Fe}(3) - \operatorname{Fe}(2) - \operatorname{Fe}(1) & \operatorname{Id}_{4} (3) & \operatorname{Fe}(3) - \operatorname{Fe}(5) & \operatorname{Fe}(5) & \operatorname{Id}_{2} (3) \\ & \operatorname{Fe}(4) - \operatorname{Fe}(7) & \operatorname{Id}_{3} (3) & \operatorname{Fe}(8) - \operatorname{Fe}(5) & \operatorname{Fe}(5) & \operatorname{Id}_{2} (3) \\ & \operatorname{Fe}(10) - \operatorname{Fe}(7) - \operatorname{Fe}(2) & \operatorname{Id}_{5} (3) & \operatorname{Fe}(7) - \operatorname{Fe}(1) & \operatorname{Fe}(1) & \operatorname{Pe}(2) \\ & \operatorname{Fe}(10) - \operatorname{Fe}(7) - \operatorname{Fe}(3) & \operatorname{Id}_{5} (3) & \operatorname{Fe}(7) - \operatorname{Fe}(1) & \operatorname{Fe}(1) & \operatorname{Pe}(2) \\ & (\mu_{2} \cdot \mathbf{Se}) - \operatorname{Fe}(\mu_{2} \cdot \mathbf{Se}) & \operatorname{Id}_{2} (\mu_{2} \cdot \mathbf{Se}) \\ & \operatorname{Fe}(10) - \operatorname{Fe}(5) - \operatorname{Fe}(5) & \operatorname{Id}_{7} (3) & \operatorname{Fe}(7) - \operatorname{Fe}(1) & \operatorname{Fe}(1) & \operatorname{Pe}(2) \\ & \operatorname{Fe}(1) - \operatorname{Se}(1) & 111.4 & (3) & \operatorname{Se}(1) - \operatorname{Fe}(4) - \operatorname{Se}(2) & 113.1 & (3) \\ & \operatorname{Se}(3) - \operatorname{Fe}(1) - \operatorname{Se}(1) & 115.4 & (3) & \operatorname{Se}(1) - \operatorname{Fe}(3) - \operatorname{Se}(3) & 113.1 & (3) \\ & \operatorname{Se}(3) - \operatorname{Fe}(1) - \operatorname{Se}(1) & 115.4 & (3) & \operatorname{Se}(1) - \operatorname{Fe}(3) - \operatorname{Se}(3) & 111.4 & (2) \\ & \operatorname{Se}(1) - \operatorname{Fe}(7) - \operatorname{Se}(1) & 115.0 & (3) & \operatorname{Se}(1) - \operatorname{Fe}(3) - \operatorname{Se}(4) & 110.4 & (2) \\ & \operatorname{Se}(3) - \operatorname{Fe}(1) - \operatorname{Se}(1) & 106.3 & (2) & \operatorname{Se}(3) - \operatorname{Fe}(3) - \operatorname{Se}(4) & 114.4 & (0) & (3) \\ & \operatorname{Se}(3) - \operatorname{Fe}(1) - \operatorname{Se}(4) & 106.5 & (2) & \operatorname{Se}(3) - \operatorname{Fe}(3) - \operatorname{Se}(4) & 114.4 & (0) & (3) \\ & \operatorname{Se}(1) - \operatorname{Fe}(5) - \operatorname{Se}(9) & 111.4 & (3) & \operatorname{Se}(6) - \operatorname{Fe}(3) - \operatorname{Se}(4) & 114.0 & (3) \\ & \operatorname{Se}(1) - \operatorname{Fe}(5) - \operatorname{Se}(9) & 111.4 & (3) & \operatorname{Se}(1) - \operatorname{Fe}(6) - \operatorname{Se}(1) & 114.4 & (3) \\ & \operatorname{Se}(1) - \operatorname{Fe}(5) - \operatorname{Se}(1) & 110.3 & (2) & \operatorname{Se}(1) - \operatorname{Fe}(6) - \operatorname{Se}(1) & 114.3 & (3) \\ & \operatorname{Se}(1) - \operatorname{Fe}(5) - \operatorname{Se}(1) & 110.3 & \operatorname{Se}(1) - \operatorname{Fe}(6) - \operatorname{Se}(1) & 114.3 & (3) \\ & \operatorname{Se}(1) - \operatorname{Fe}(3) - \operatorname{Se}(1) & 105.7 & (2) & \operatorname{Se}(1) - \operatorname{Fe}(6) - \operatorname{Se}(1) & 106.1 & (2) \\ & \operatorname{Se}(6) - \operatorname{Fe}(3) - \operatorname{Se}(1) & 106.3 & \operatorname{Se}(1) - \operatorname{Fe}(6) - \operatorname{Se}(1) & 106.1 & (2) \\ & \operatorname{Se}(6) - \operatorname{Fe}(3) - \operatorname{Se}(1) & 106.3 & \operatorname{Se}(1) - \operatorname{Fe}(6) - \operatorname{Se}(1) & 106.1 & (2) \\ & \operatorname{Se}(1) - \operatorname{Fe}(0) - \operatorname{Se}(1) & 106.3 & \operatorname{Se}(1) - \operatorname{Fe}(6) - \operatorname{Se}(1) & 106.1 & (2) \\ & \operatorname{Se}(1) - \operatorname{Fe}(1) - \operatorname{Se}(1) & 106.3 & \operatorname{Se}(1) - \operatorname{Fe}(6) - \operatorname{Se}(1$		re-r	e-re	
$\begin{split} & Fe(3)-Fe(2)-Fe(4) & 164.6 (2) & Fe(3)-Fe(2)-Fe(5) & 159.2 (3) \\ & Fe(6)-Fe(5)-Fe(4) & 163.8 (3) & Fe(8)-Fe(9)-Fe(6) & 160.1 (3) \\ & In Fe_{4}(\mu_{2}-Se)_{4}(\mu_{4}-Se) & Bridgehead \\ & Fe(10)-Fe(1)-Fe(2) & 157.3 (2) & Fe(4)-Fe(1)-Fe(1) & 92.2 (2) \\ Fe(10)-Fe(4)-Fe(5) & 157.7 (3) & Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ Fe(10)-Fe(4)-Fe(5) & 157.7 (3) & Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ Fe(10)-Fe(4)-Fe(5) & 157.7 (3) & Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ Fe(10)-Fe(4)-Fe(5) & 111.4 (3) & Se(4)-Fe(2)-Se(2) & 110.7 (3) \\ Se(3)-Fe(1)-Se(1) & 111.4 (3) & Se(4)-Fe(2)-Se(2) & 110.7 (3) \\ Se(3)-Fe(4)-Se(7) & 112.3 (3) & Se(10)-Fe(5)-Se(8) & 112.2 (3) \\ Se(4)-Fe(7)-Se(13) & 114.7 (3) & Se(10)-Fe(5)-Se(8) & 112.2 (3) \\ Se(4)-Fe(7)-Se(13) & 115.0 (3) & Se(1)-Fe(5)-Se(8) & 110.4 (2) \\ Se(5)-Fe(2)-Se(2) & 110.5 (3) & Se(1)-Fe(5)-Se(8) & 110.4 (2) \\ Se(5)-Fe(2)-Se(2) & 110.6 (3) & Se(6)-Fe(3)-Se(4) & 110.4 (2) \\ Se(5)-Fe(2)-Se(3) & 110.6 (3) & Se(6)-Fe(3)-Se(4) & 110.4 (3) \\ Se(1)-Fe(5)-Se(8) & 111.4 (3) & Se(15)-Fe(6)-Se(10) & 110.4 (3) \\ Se(1)-Fe(5)-Se(8) & 111.4 (3) & Se(13)-Fe(6)-Se(10) & 110.4 (3) \\ Se(1)-Fe(5)-Se(8) & 111.4 (3) & Se(13)-Fe(6)-Se(10) & 110.4 (3) \\ Se(1)-Fe(8)-Se(10) & 106.1 (2) & Se(17)-Fe(9)-Se(12) & 113.1 (3) \\ Se(1)-Fe(8)-Se(10) & 106.4 (2) & Se(1))-Fe(6)-Se(10) & 110.4 (3) \\ Se(1)-Fe(8)-Se(10) & 106.1 (2) & Se(17)-Fe(9)-Se(10) & 110.4 (3) \\ Se(1)-Fe(6)-Se(1) & 110.3 & Se(6)-Fe(3)-Se(4) & 106.6 (2) \\ Se(1)-Fe(6)-Se(1) & 110.3 & Se(6)-Fe(3)-Se(4) & 106.6 (2) \\ Se(1)-Fe(6)-Se(1) & 110.3 & Se(6)-Fe(3)-Se(4) & 106.4 (2) \\ Se(1)-Fe(6)-Se(1) & 110.4 (3) & Se(18)-Fe(9)-Se(1) & 103.4 (3) \\ Se(13)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(2) & 108.4 (2) \\ Se(13)-Fe(0)-Se(1) & 110.4 (3) & Se(18)-Fe(6)-Se(1) & 103.4 (2) \\ Se(13)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ Se(13)-Fe(1)-Se(1) & 110.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ Se(13)-Fe(1)-Se(1) & 110.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-F$		In $Fe_6(\mu_2-S)$	Se) ₁₀ Chain	
$\begin{split} & Fe(6)-Fe(5)-Fe(4) & 162.1 (3) & Fe(9)-Fe(6)-Fe(5) & 160.1 (3) \\ & In Fe_4(\mu_2-Se)_5(\mu_4-Se) Bridgehead \\ & Fe(10)-Fe(1)-Fe(2) & 157.3 (2) & Fe(4)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(10)-Fe(7)-Fe(8) & 155.7 (3) & Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(10)-Fe(7)-Fe(8) & 155.7 (3) & Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(10)-Fe(7)-Fe(8) & 155.7 (3) & Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(10)-Fe(4)-Fe(5) & 157.7 (3) & Fe(7)-Fe(10)-Fe(4) & 91.4 (2) \\ & (\mu_2-Se)_{10} Chain \\ & Se(3)-Fe(1)-Se(1) & 111.4 (3) & Se(4)-Fe(2)-Se(2) & 111.4 (3) \\ & Se(3)-Fe(1)-Se(1) & 117.6 (3) & Se(4)-Fe(2)-Se(3) & 111.1 (9) \\ & Se(3)-Fe(1)-Se(1) & 115.0 (3) & Se(10)-Fe(5)-Se(8) & 111.9 (2) \\ & Se(4)-Fe(7)-Se(13) & 115.0 (3) & Se(17)-Fe(8)-Se(15) & 111.9 (2) \\ & Se(3)-Fe(1)-Se(2) & 106.2 (2) & Se(3)-Fe(2)-Se(2) & 104.8 (2) \\ & Se(3)-Fe(1)-Se(2) & 106.4 (2) & Se(5)-Fe(2) & 104.8 (2) \\ & Se(3)-Fe(2)-Se(2) & 111.4 (3) & Se(6)-Fe(3)-Se(4) & 114.0 (3) \\ & Se(5)-Fe(2)-Se(2) & 111.4 (3) & Se(6)-Fe(3)-Se(4) & 114.0 (3) \\ & Se(1)-Fe(5)-Se(8) & 111.4 (2) & Se(1)-Fe(6)-Se(10) & 110.4 (3) \\ & Se(1)-Fe(5)-Se(8) & 111.4 (3) & Se(6)-Fe(3)-Se(4) & 114.0 (3) \\ & Se(1)-Fe(5)-Se(8) & 111.4 (3) & Se(8)-Fe(6)-Se(12) & 113.1 (3) \\ & Se(1)-Fe(5)-Se(9) & 111.8 (3) & Se(8)-Fe(6)-Se(12) & 113.1 (3) \\ & Se(1)-Fe(5)-Se(6) & 100.4 (2) & Se(5)-Fe(3)-Se(4) & 106.4 (2) \\ & Se(6)-Fe(3)-Se(5) & 100.9 (3) & Se(18)-Fe(6)-Se(12) & 103.2 (2) \\ & Se(17)-Fe(8)-Se(16) & 105.7 (2) & Se(17)-Fe(6)-Se(12) & 105.2 (2) \\ & Se(18)-Fe(0)-Se(1) & 103.3 & Se(18)-Fe(0)-Se(12) & 105.2 (2) \\ & Se(18)-Fe(0)-Se(1) & 103.3 & Se(18)-Fe(0)-Se(12) & 105.2 (2) \\ & Se(18)-Fe(0)-Se(1) & 103.3 & Se(18)-Fe(0)-Se(12) & 105.2 (2) \\ & Se(18)-Fe(0)-Se(1) & 103.3 & Se(18)-Fe(0)-Se(1) & 106.2 (2) \\ & Se(19)-Fe(1)-Se(1) & 109.4 & (2) \\ & Se(19)-Fe(1)-Se(1) & 109.4 & (2) \\ & Se(19)-Fe(1)-Se(1) & 109.4 & (2) \\ & Se(19)-Fe(1)-Se(1) & 100.4 & (2) \\ & Se(19)-Fe(1)-Se(1) & 1$	Fe(3)-Fe(2)-Fe(1)	164.6 (2)	Fe(3')-Fe(3)-Fe(2)	161.0 (1)
$ \begin{split} & Fe(9)-Fe(3)-Fe(7) & 163.8 (3) & Fe(8)-Fe(9)-Fe(6') & 160.1 (3) \\ & In Fe_4(\mu_2-Se)_1(\mu_2-Se) Bridgebead \\ & Fe(10)-Fe(1)-Fe(2) & 157.3 (2) Fe(4)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(10)-Fe(4)-Fe(S) & 157.7 (3) Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(10)-Fe(4)-Fe(S) & 157.7 (3) Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(10)-Fe(4)-Fe(S) & 157.7 (3) Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(10)-Fe(4)-Fe(S) & 157.7 (3) Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ & Fe(1)-Se(1) & 111.4 (3) Se(4)-Fe(2)-Se(2) & 110.7 (3) \\ & Se(3)-Fe(4)-Se(7) & 112.3 (3) Se(10)-Fe(5)-Se(8) & 111.2 (2) \\ & Se(4)-Fe(7)-Se(13) & 114.7 (3) Se(1)-Fe(5)-Se(8) & 111.9 (2) \\ & Se(4)-Fe(7)-Se(13) & 114.7 (3) Se(1)-Fe(5)-Se(8) & 111.4 (2) \\ & Se(4)-Fe(7)-Se(13) & 114.7 (3) Se(1)-Fe(5)-Se(8) & 103.6 (2) \\ & Se(3)-Fe(7)-Se(13) & 110.6 (3) Se(6)-Fe(3)-Se(14) & 110.4 (3) \\ & Se(3)-Fe(2)-Se(2) & 111.4 (3) Se(6)-Fe(3)-Se(4) & 112.1 (3) \\ & Se(5)-Fe(2)-Se(3) & 110.6 (3) Se(6)-Fe(3)-Se(4) & 112.1 (3) \\ & Se(1)-Fe(5)-Se(8) & 111.4 (2) Se(1)-Fe(6)-Se(10) & 114.3 (3) \\ & Se(1)-Fe(5)-Se(8) & 111.4 (2) Se(1)-Fe(6)-Se(10) & 114.3 (3) \\ & Se(1)-Fe(5)-Se(15) & 110.3 (2) Se(1)-Fe(6)-Se(10) & 114.3 (3) \\ & Se(1)-Fe(5)-Se(10) & 106.1 (2) Se(1)-Fe(6)-Se(10) & 110.4 (3) \\ & Se(1)-Fe(6)-Se(1) & 110.3 (3) Se(6)-Fe(3)-Se(6) & 106.1 (2) \\ & Se(5)-Fe(2)-Se(4) & 106.4 (2) Se(5)-Fe(3)-Se(6) & 106.1 (2) \\ & Se(6)-Fe(3)-Se(5) & 110.1 (3) Se(6)-Fe(3)-Se(6) & 106.1 (2) \\ & Se(1)-Fe(6)-Se(1) & 110.3 (3) Se(6)-Fe(3)-Se(6) & 106.1 (2) \\ & Se(1)-Fe(0)-Se(1) & 100.5 (3) Se(13)-Fe(6)-Se(12) & 105.2 (2) \\ & Se(13)-Fe(0)-Se(1) & 101.3 (3) Se(13)-Fe(6)-Se(12) & 105.2 (2) \\ & Se(13)-Fe(0)-Se(1) & 113.3 (3) Se(13)-Fe(6)-Se(12) & 105.2 (2) \\ & Se(13)-Fe(1)-Se(1) & 106.4 (2) Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(13)-Fe(1)-Se(1) & 106.4 (2) Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(13)-Fe(1)-Se(1) & 106.4 (2) Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(13)-Fe(1)-Se(1) & 106.4 (2) Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(13)-Fe(1)-Se(1) & 106.4 (2) Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.7 (2) & mean & 108.6 $	Fe(6)-Fe(5)-Fe(4)	162.1 (3)	Fe(9')-Fe(6)-Fe(5)	159.2 (3)
$\begin{split} & \mbox{Int} Fe_4(\mu_2-Se)_4(\mu_2-Se) \ Bridgehead} \\ Fe(10)-Fe(7)-Fe(2) 157.3 (2) Fe(4)-Fe(1)-Fe(1) 92.2 (2) \\ Fe(10)-Fe(4)-Fe(5) 157.7 (3) Fe(7)-Fe(10)-Fe(4) 91.4 (2) \\ & (\mu_2-Se)-Fe-(\mu_2-Se) \\ & \mbox{Int} Fe_6(\mu_2-Se)_0 \ Chain \\ Se(2)-Fe(1)-Se(1) 111.4 (3) Se(4)-Fe(2)-Se(2) 113.1 (3) \\ Se(3)-Fe(1)-Se(1) 117.6 (3) Se(4)-Fe(2)-Se(3) 113.1 (3) \\ Se(3)-Fe(1)-Se(1) 117.6 (3) Se(4)-Fe(2)-Se(3) 113.1 (3) \\ Se(3)-Fe(1)-Se(1) 117.6 (3) Se(4)-Fe(2)-Se(2) 110.4 (2) \\ Se(4)-Fe(7)-Se(13) 115.0 (3) Se(17)-Fe(8)-Se(14) 110.4 (2) \\ Se(3)-Fe(1)-Se(2) 106.2 (2) Se(3)-Fe(2)-Se(2) 110.4 (3) \\ Se(3)-Fe(1)-Se(2) 106.2 (2) Se(3)-Fe(2)-Se(4) 114.0 (3) \\ Se(3)-Fe(2)-Se(3) 111.4 (3) Se(6)-Fe(3)-Se(4) 114.0 (3) \\ Se(5)-Fe(2)-Se(2) 111.4 (3) Se(6)-Fe(3)-Se(4) 114.0 (3) \\ Se(5)-Fe(2)-Se(2) 111.4 (3) Se(6)-Fe(3)-Se(4) 114.0 (3) \\ Se(1)-Fe(5)-Se(8) 111.4 (2) Se(1)-Fe(6)-Se(10) 114.3 (3) \\ Se(1)-Fe(5)-Se(8) 111.4 (3) Se(6)-Fe(3)-Se(4) 114.0 (3) \\ Se(1)-Fe(5)-Se(8) 111.8 (3) Se(18)-Fe(6)-Se(10) 114.3 (3) \\ Se(1)-Fe(5)-Se(1) 111.3 (3) Se(17)-Fe(6)-Se(10) 114.3 (3) \\ Se(1)-Fe(5)-Se(1) 111.3 (3) Se(17)-Fe(6)-Se(1) 114.3 (3) \\ Se(1)-Fe(5)-Se(1) 111.3 (3) Se(18)-Fe(6)-Se(1) 104.1 (2) \\ Se(6)-Fe(3)-Se(5) 101.1 (3) Se(6)-Fe(3)-Se(6) 106.1 (2) \\ Se(6)-Fe(3)-Se(5) 101.1 (3) Se(6)-Fe(3)-Se(6) 106.1 (2) \\ Se(6)-Fe(3)-Se(5) 101.1 (3) Se(18)-Fe(9)-Se(12) 102.2 (2) \\ Se(6)-Fe(4)-Se(1) 111.3 (3) \\ mean 112 (2) \\ In Fe_4(\mu_2-Se)_4(\mu_2-Se) Bridgehead \\ Se(7)-Fe(1)-Se(1) 113.8 (3) \\ mean 112 (2) \\ Se(13)-Fe(1)-Se(1) 113.8 (3) \\ mean 112 (2) \\ Se(19)-Fe(1)-Se(1) 100.4 (2) Se(19)-Fe(1)-Se(3) 108.7 (2) \\ Se(19)-Fe(1)-Se(1) 100.4 (2) Se(19)-Fe(1)-Se(3) 108.7 (2) \\ Se(19)-Fe(1)-Se(1) 100.4 (2) Se(19)-Fe(1) 105.2 (3) 8e(1)) \\ Se(19)-Fe(1)-Se(1) 100.6 (2) Se(19)-Fe(1) 105.2 (3) \\ Se(19)-Fe(1)-Se(1) 100.6 (2) Se(19)-Fe(1) 100.7 (2) \\ Se(19)-Fe(1)-Se(1) 100.6 (2) Fe(7)-Se(1)-Fe(1) 100.7 (2) \\ Fe(1)-Se(1)$	Fe(9)-Fe(8)-Fe(7)	163.8 (3)	Fe(8)-Fe(9)-Fe(6')	160.1 (3)
$\begin{split} & Fe(10)-Fe(1)-Fe(2) = 157.3 (2) Fe(4)-Fe(10)-Fe(1) & 92.2 (2) \\ Fe(10)-Fe(7)-Fe(8) = 156.7 (3) Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ Fe(10)-Fe(4)-Fe(5) = 157.7 (3) Fe(7)-Fe(10)-Fe(1) & 92.2 (2) \\ (\mu_2-Se)-Fe-(\mu_2-Se) & In Fe_6(\mu_2-Se) \\ In Fe_6(\mu_2-Se)_D Chain \\ Se(2)-Fe(1)-Se(1) = 111.4 (3) Se(4)-Fe(2)-Se(2) = 110.7 (3) \\ Se(3)-Fe(4)-Se(7) = 112.3 (3) Se(1)0-Fe(5)-Se(8) = 112.2 (3) \\ Se(3)-Fe(4)-Se(7) = 112.3 (3) Se(1)0-Fe(5)-Se(8) = 112.2 (3) \\ Se(4)-Fe(7)-Se(13) = 114.7 (3) Se(1)0-Fe(5)-Se(8) = 112.2 (3) \\ Se(4)-Fe(7)-Se(13) = 115.9 (3) Se(1)0-Fe(5)-Se(8) = 111.9 (3) \\ Se(3)-Fe(7)-Se(13) = 115.9 (3) Se(1)0-Fe(5)-Se(8) = 111.9 (3) \\ Se(3)-Fe(7)-Se(13) = 116.3 (3) Se(5)-Fe(3)-Se(4) = 110.4 (2) \\ Se(5)-Fe(2)-Se(2) = 106.2 (2) Se(3)-Fe(3)-Se(4) = 110.4 (2) \\ Se(5)-Fe(2)-Se(3) = 106.3 (2) Se(1)-Fe(8)-Se(14) = 114.9 (2) \\ Se(5)-Fe(2)-Se(3) = 106.3 (2) Se(1)-Fe(8)-Se(14) = 114.9 (2) \\ Se(5)-Fe(2)-Se(3) = 106.3 (2) Se(1)-Fe(8)-Se(14) = 114.9 (2) \\ Se(5)-Fe(2)-Se(3) = 106.3 (2) Se(1)-Fe(8)-Se(14) = 114.3 (3) \\ Se(11)-Fe(5)-Se(9) = 111.8 (3) Se(13)-Fe(6)-Se(10) = 114.3 (3) \\ Se(11)-Fe(5)-Se(1) = 106.1 (2) Se(11)-Fe(6)-Se(10) = 114.3 (3) \\ Se(11)-Fe(5)-Se(1) = 106.1 (2) Se(11)-Fe(6)-Se(1) = 108.1 (2) \\ Se(6)-Fe(3)-Se(5) = 100.3 (2) Se(18)-Fe(9)-Se(12) = 105.2 (2) \\ Se(12)-Fe(6)-Se(12) = 105.3 (3) Se(18)-Fe(9)-Se(12) = 105.2 (2) \\ Se(13)-Fe(0)-Se(1) = 103.3 (3) Se(18)-Fe(6)-Se(1) = 106.1 (2) \\ Se(13)-Fe(1)-Se(1) = 107.9 (3) \\ Se(13)-Fe(1)-Se(1) = 103.4 (3) \\ Se(13)-Fe(1)-Se(1) = 104.4 (2) Se(19)-Fe(1)-Se(2) = 105.2 (2) \\ Se(19)-Fe(1)-Se(1) = 104.2 (3) Se(18)-Fe(6)-Se(1) = 105.2 (2) \\ Se(19)-Fe(1)-Se(1) = 104.2 (3) Se(18)-Fe(6)-Se(1) = 105.2 (2) \\ Se(19)-Fe(1)-Se(1) = 106.4 (2) Se(19)-Fe(1)-Se(2) = 105.8 (2) \\ Se(19)-Fe(1)-Se(1) = 106.2 (3) Se(19)-Fe(1)-Se(2) = 105.8 (2) \\ Se(19)-Fe(1)-Se(1) = 106.2 (3) Se(19)-Fe(1)-Se(2) = 105.8 (2) \\ Se(19)-Fe(1)-Se(1) = 106.2 (3) Se(19)-Fe(1)-Se(2) = 105.8 (2) \\ Se(19)-Fe(1)-Se(1) = 106.2 (3) Se(1)-Fe(5) = 100.8 (2) \\ Se(19)-Fe(1)-Se(1) = 106.2 (3) Se(1)-Fe(5) = 100.8 (2) \\ Se(19)-Fe(1$	In Fe	$(\mu_2 - \mathrm{Se})_2(\mu_2)$	-Se) Bridgehead	
$ \begin{array}{c} {\rm Fe}(10) - {\rm Fe}(1) - {\rm Fe}(1) \\ {\rm Fe}(1) - {\rm Fe}(1) - {\rm Fe}(1) \\ {\rm Fe}(1) - {\rm Fe}(1) \\ {\rm Fe}(1) - {\rm Fe}(1) \\ {\rm In} \ {\rm Fe}_{6}(\mu_{x} - {\rm Se})_{0} \ {\rm Chain} \\ {\rm Se}(2) - {\rm Fe}(1) - {\rm Se}(1) \\ {\rm In} \ {\rm Fe}_{6}(\mu_{x} - {\rm Se})_{0} \ {\rm Chain} \\ {\rm Se}(3) - {\rm Fe}(1) - {\rm Se}(1) \\ {\rm In} \ {\rm 111} \ {\rm 4.3} \\ {\rm Se}(4) - {\rm Fe}(2) - {\rm Se}(2) \\ {\rm 111.4} \ {\rm (3)} \ {\rm Se}(4) - {\rm Fe}(2) - {\rm Se}(2) \\ {\rm 111.7} \ {\rm (3)} \ {\rm Se}(4) - {\rm Fe}(2) - {\rm Se}(3) \\ {\rm 111.7} \ {\rm (3)} \ {\rm Se}(4) - {\rm Fe}(2) - {\rm Se}(3) \\ {\rm 111.7} \ {\rm (3)} \ {\rm Se}(4) - {\rm Fe}(3) - {\rm Se}(3) \\ {\rm Se}(1) - {\rm Fe}(3) - {\rm Se}(1) \\ {\rm Se}(1) - {\rm Fe}(3) - {\rm Se}(1) \\ {\rm Se}(1) - {\rm Fe}(3) - {\rm Se}(1) \\ {\rm Se}(1) - {\rm Fe}(3) - {\rm Se}(1) \\ {\rm Se}(1) - {\rm Fe}(3) - {\rm Se}(4) \\ {\rm 110.4} \ {\rm (2)} \\ {\rm Se}(3) - {\rm Fe}(1) - {\rm Se}(1) \\ {\rm 110.5} \ {\rm (3)} \ {\rm Se}(1) - {\rm Fe}(8) - {\rm Se}(1) \\ {\rm 110.4} \ {\rm (2)} \\ {\rm Se}(3) - {\rm Fe}(1) - {\rm Se}(2) \\ {\rm Se}(1) - {\rm Fe}(3) - {\rm Se}(4) \\ {\rm 110.6} \ {\rm (3)} \ {\rm Se}(6) - {\rm Fe}(3) - {\rm Se}(4) \\ {\rm 110.4} \ {\rm (0)} \\ {\rm Se}(3) - {\rm Fe}(2) - {\rm Se}(2) \\ {\rm 111.4} \ {\rm (3)} \ {\rm Se}(6) - {\rm Fe}(3) - {\rm Se}(4) \\ {\rm 114.0} \ {\rm (3)} \\ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 110.4} \ {\rm (3)} \ {\rm Se}(6) - {\rm Fe}(3) - {\rm Se}(4) \\ {\rm 114.0} \ {\rm (3)} \\ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 110.4} \ {\rm (3)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 114.3} \ {\rm (3)} \\ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 110.4} \ {\rm (3)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 110.4} \ {\rm (3)} \\ {\rm Se}(6) - {\rm Fe}(3) - {\rm Se}(5) \\ {\rm 100.6} \ {\rm (2)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 106.4} \ {\rm (2)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 106.4} \ {\rm (2)} \\ {\rm Se}(6) - {\rm Fe}(3) - {\rm Se}(1) \\ {\rm 106.4} \ {\rm (2)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 106.4} \ {\rm (2)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 106.4} \ {\rm (2)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 106.4} \ {\rm (2)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 106.4} \ {\rm (2)} \ {\rm Se}(1) - {\rm Fe}(6) - {\rm Se}(1) \\ {\rm 106$	Fe(10) - Fe(1) - Fe(2)	157.3 (2)	Fe(4) - Fe(10) - Fe(1)	92.2 (2)
$ \begin{split} & Fe(10)-Fe(4)-Fe(5) & 157.7 (3) Fe(7)-Fe(10)-Fe(4) & 91.4 (2) \\ & (\mu_2-Se)-Fe-(\mu_2-Se) \\ & In Fe_{4}(\mu_2-Se)_{10} Chain \\ & Se(2)-Fe(1)-Se(1) & 111.4 (3) Se(4)-Fe(2)-Se(2) & 113.1 (3) \\ & Se(3)-Fe(4)-Se(7) & 115.9 (3) Se(10)-Fe(5)-Se(8) & 112.2 (3) \\ & Se(3)-Fe(4)-Se(7) & 115.9 (3) Se(10)-Fe(5)-Se(8) & 111.2 (2) \\ & Se(13)-Fe(7)-Se(13) & 114.7 (3) Se(17)-Fe(8)-Se(14) & 110.4 (2) \\ & Se(13)-Fe(7)-Se(13) & 115.0 (3) Se(17)-Fe(8)-Se(14) & 110.4 (2) \\ & Se(3)-Fe(1)-Se(2) & 106.2 (2) Se(3)-Fe(2)-Se(2) & 104.8 (2) \\ & Se(5)-Fe(2)-Se(2) & 111.4 (3) Se(6)-Fe(3)-Se(4) & 114.0 (3) \\ & Se(5)-Fe(2)-Se(2) & 111.4 (3) Se(6)-Fe(3)-Se(4) & 112.1 (3) \\ & Se(5)-Fe(2)-Se(3) & 110.6 (3) Se(18)-Fe(6)-Se(10) & 110.4 (3) \\ & Se(11)-Fe(5)-Se(9) & 111.8 (3) Se(6)-Fe(3)-Se(4) & 112.1 (3) \\ & Se(11)-Fe(5)-Se(9) & 111.8 (3) Se(18)-Fe(6)-Se(10) & 110.4 (3) \\ & Se(11)-Fe(5)-Se(10) & 106.4 (2) Se(5)-Fe(3)-Se(4) & 110.4 (2) \\ & Se(5)-Fe(2)-Se(10) & 106.4 (2) Se(5)-Fe(3)-Se(4) & 106.6 (2) \\ & Se(17)-Fe(8)-Se(10) & 106.1 (2) Se(17)-Fe(9)-Se(12) & 103.1 (2) \\ & Se(17)-Fe(8)-Se(10) & 106.1 (2) Se(17)-Fe(9)-Se(12) & 105.2 (2) \\ & Se(12)-Fe(0)-Se(1) & 100.4 (3) \\ & Se(12)-Fe(0)-Se(1) & 100.4 (3) \\ & Se(13)-Fe(10)-Se(1) & 101.3 (3) \\ & Se(18)-Fe(6)-Se(11) & 107.9 (3) \\ & Se(18)-Fe(0)-Se(1) & 113.8 (3) \\ & In Fe_{4}(\mu_2-Se)_{4}(\mu_2-Se)_{4}(\mu_2-Se) \\ & In Fe_{4}(\mu_2-Se)_{4}(\mu_2-Se)_{4}(\mu_2-Se) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) \\ & Se(19)-Fe(1)-Se(1) & 107.4 (2) \\ & Se(19)-Fe(1)-Se(1) & 107.4 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) \\ & Se(19)-Fe(1) & 106.4 (2) \\ & Se(19)-Fe(1) & 108.4 (2) \\$	Fe(10) - Fe(7) - Fe(8)	156.7 (3)	Fe(7) - Fe(10) - Fe(1)	92.2 (2)
$(\mu_2 - Se) - Fe^{-}(\mu_2 - Se)$ In Fe_{(}(\mu_2 - Se)_{10} Chain Se(2) - Fe(1) - Se(1) 111.4 (3) Se(4) - Fe(2) - Se(2) 110.7 (3) Se(3) - Fe(1) - Se(1) 117.6 (3) Se(4) - Fe(2) - Se(3) 113.1 (3) Se(3) - Fe(1) - Se(1) 117.6 (3) Se(1) - Fe(5) - Se(8) 112.2 (3) Se(4) - Fe(7) - Se(13) 115.0 (3) Se(1) - Fe(5) - Se(9) 111.9 (2) Se(3) - Fe(1) - Se(2) 106.2 (2) Se(3) - Fe(3) - Se(4) 110.4 (2) Se(3) - Fe(1) - Se(2) 106.2 (2) Se(3) - Fe(3) - Se(4) 114.0 (3) Se(5) - Fe(2) - Se(4) 110.6 (3) Se(6) - Fe(3) - Se(4) 114.0 (3) Se(5) - Fe(2) - Se(4) 110.4 (3) Se(1) - Fe(6) - Se(1) 114.7 (3) Se(1) - Fe(6) - Se(1) 114.7 (3) Se(1) - Fe(6) - Se(1) 114.4 (3) Se(6) - Fe(3) - Se(4) 114.0 (3) Se(1) - Fe(5) - Se(8) 111.4 (3) Se(1) - Fe(6) - Se(1) 114.4 (3) Se(1) - Fe(6) - Se(1) 114.4 (3) Se(1) - Fe(6) - Se(1) 114.4 (3) Se(1) - Fe(6) - Se(1) 114.3 (3) Se(1) - Fe(6) - Se(1) 114.3 (3) Se(1) - Fe(6) - Se(1) 105.7 (2) Se(1) - Fe(6) - Se(1) 108.1 (2) Se(1) - Fe(6) - Se(1) 106.1 (2) Se(1) - Fe(0) - Se(1) 107.0 (2) Se(1) - Fe(0) - Se(1) 106.1 (2) Se(1) - Fe(0) - Se(1) - 106.2 (2) Se(1) - Fe(0)	Fe(10) - Fe(4) - Fe(5)	157.7 (3)	Fe(7) - Fe(10) - Fe(4)	91.4 (2)
$\begin{tabular}{ c $				/ (_)
$\begin{split} & \ln Fe_{4}\mu_{x}Se_{10} - Chain \\ Se(2)-Fe(1)-Se(1) \\ 111.4 (3) \\ Se(4)-Fe(2)-Se(2) \\ 112.3 (3) \\ Se(1)-Fe(5)-Se(8) \\ 112.2 (3) \\ Se(1)-Fe(7)-Se(13) \\ 114.7 (3) \\ Se(1)-Fe(5)-Se(8) \\ 111.9 (2) \\ Se(1)-Fe(7)-Se(13) \\ 114.7 (3) \\ Se(1)-Fe(8)-Se(14) \\ 110.4 (2) \\ Se(1)-Fe(7)-Se(13) \\ 115.0 (3) \\ Se(1)-Fe(8)-Se(14) \\ 110.4 (2) \\ Se(1)-Fe(7)-Se(14) \\ 106.3 (2) \\ Se(1)-Fe(5)-Se(18) \\ 105.2 (3) \\ Se(1)-Fe(5)-Se(18) \\ 106.3 (2) \\ Se(5)-Fe(2)-Se(14) \\ 106.3 (2) \\ Se(5)-Fe(2)-Se(14) \\ 106.3 (2) \\ Se(5)-Fe(2)-Se(14) \\ 106.3 (2) \\ Se(1)-Fe(5)-Se(18) \\ 111.4 (3) \\ Se(1)-Fe(6)-Se(10) \\ 111.4 (3) \\ Se(1)-Fe(6)-Se(11) \\ 111.4 (3) \\ Se(1)-Fe(6)-Se(11) \\ 111.3 (3) \\ Se(1)-Fe(6)-Se(12) \\ 111.3 (3) \\ Se(1)-Fe(6)-Se(12) \\ 111.3 (3) \\ Se(1)-Fe(6)-Se(12) \\ 111.3 (3) \\ Se(1)-Fe(6)-Se(11) \\ 111.3 (3) \\ Se(1)-Fe(6)-Se(12) \\ 111.3 (3) \\ Se(1)-Fe(6)-Se(11) \\ 111.4 (3) \\ Se(1)-Fe(6)-Se(11) \\ 111.4 (3) \\ Se(1)-Fe(6)-Se(11) \\ 111.4 (3) \\ Se(1)-Fe(1)-Se(1) \\ 105.4 (2) \\ Se(1)-Fe(1)-Se(1) \\ 106.4 (2$		$(\mu_2 - Se) - F$	$e^{-(\mu_2-Se)}$	
$\begin{split} & Se(2)-Fe(1)-Se(1) & 111.4 (3) & Se(4)-Fe(2)-Se(2) & 110.7 (3) \\ & Se(3)-Fe(1)-Se(1) & 117.6 (3) & Se(4)-Fe(2)-Se(3) & 113.1 (3) \\ & Se(3)-Fe(4)-Se(7) & 112.3 (3) & Se(10)-Fe(5)-Se(8) & 112.2 (3) \\ & Se(14)-Fe(7)-Se(13) & 115.0 (3) & Se(17)-Fe(8)-Se(15) & 111.9 (3) \\ & Se(3)-Fe(1)-Se(2) & 106.2 (2) & Se(3)-Fe(2)-Se(15) & 111.4 (2) \\ & Se(3)-Fe(4)-Se(8) & 105.2 (3) & Se(17)-Fe(8)-Se(14) & 110.4 (2) \\ & Se(3)-Fe(4)-Se(8) & 106.2 (2) & Se(3)-Fe(3)-Se(14) & 110.4 (2) \\ & Se(5)-Fe(2)-Se(14) & 106.3 (2) & Se(17)-Fe(8)-Se(14) & 110.4 (2) \\ & Se(5)-Fe(2)-Se(2) & 111.4 (3) & Se(6)-Fe(3)-Se(4) & 114.0 (3) \\ & Se(5)-Fe(2)-Se(3) & 110.6 (3) & Se(6)-Fe(3)-Se(4) & 114.0 (3) \\ & Se(11)-Fe(5)-Se(8) & 111.4 (2) & Se(12)-Fe(6)-Se(10) & 110.4 (3) \\ & Se(16)-Fe(8)-Se(15) & 110.3 (2) & Se(17)-Fe(6)-Se(10) & 110.4 (3) \\ & Se(16)-Fe(8)-Se(15) & 110.3 (2) & Se(17)-Fe(9)-Se(17) & 109.2 (2) \\ & Se(5)-Fe(2)-Se(4) & 106.4 (2) & Se(5)-Fe(3)-Se(4) & 106.6 (2) \\ & Se(11)-Fe(5)-Se(10) & 106.1 (2) & Se(11)-Fe(6)-Se(10) & 108.1 (2) \\ & Se(6)-Fe(3)-Se(15) & 100.3 (3) & Se(18)-Fe(9)-Se(12) & 105.2 (2) \\ & Se(6)-Fe(3)-Se(5) & 109.9 (3) & Se(18)-Fe(9)-Se(12) & 105.2 (2) \\ & Se(17)-Fe(6)-Se(11) & 107.9 (3) \\ & Se(18)-Fe(9)-Se(11) & 113.3 (3) & Se(18)-Fe(9)-Se(12) & 105.2 (2) \\ & Se(13)-Fe(10)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(13)-Fe(10)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(13)-Fe(10)-Se(1) & 107.0 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1) - Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1) - Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1) - Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1) - Se(3) & 108.7 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1) & 108.4 (2) \\ & Se(19)-Fe(1)-Se(1) & 106.4 $		In $Fe_6(\mu_2-S)$	Se) ₁₀ Chain	
$\begin{split} & \text{Se}(3) - \text{Fe}(4) - \text{Se}(7) & 112.3 (3) & \text{Se}(4) - \text{Fe}(2) - \text{Se}(8) & 112.2 (3) \\ & \text{Se}(9) - \text{Fe}(4) - \text{Se}(7) & 115.9 (3) & \text{Se}(10) - \text{Fe}(5) - \text{Se}(8) & 112.2 (3) \\ & \text{Se}(1) - \text{Fe}(7) - \text{Se}(13) & 114.7 (3) & \text{Se}(1) - \text{Fe}(8) - \text{Se}(14) & 110.4 (2) \\ & \text{Se}(1) - \text{Fe}(7) - \text{Se}(13) & 115.0 (3) & \text{Se}(1) - \text{Fe}(8) - \text{Se}(15) & 111.9 (3) \\ & \text{Se}(3) - \text{Fe}(1) - \text{Se}(2) & 106.2 (2) & \text{Se}(3) - \text{Fe}(2) - \text{Se}(2) & 104.8 (2) \\ & \text{Se}(1) - \text{Fe}(7) - \text{Se}(14) & 106.3 (2) & \text{Se}(1) - \text{Fe}(3) - \text{Se}(14) & 110.4 (9) \\ & \text{Se}(1) - \text{Fe}(7) - \text{Se}(14) & 106.3 (2) & \text{Se}(1) - \text{Fe}(3) - \text{Se}(14) & 110.4 (9) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(2) & 111.4 (3) & \text{Se}(6) - \text{Fe}(3) - \text{Se}(14) & 110.4 (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(8) & 111.4 (2) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(10) & 114.3 (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(9) & 111.8 (3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(10) & 110.4 (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(9) & 111.8 (3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(12) & 113.1 (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(9) & 111.8 (3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(12) & 103.4 (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(1) & 105.7 (2) & \text{Se}(1) - \text{Fe}(5) - \text{Se}(10) & 108.1 (2) \\ & \text{Se}(7) - \text{Fe}(6) - \text{Se}(11) & 107.9 (3) \\ & \text{Se}(13) - \text{Fe}(6) - \text{Se}(11) & 113.3 (3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(12) & 105.2 (2) \\ & \text{Se}(13) - \text{Fe}(0) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - Fe$	Se(2)-Fe(1)-Se(1)	111.4 (3)	Se(4)-Fe(2)-Se(2)	110.7 (3)
$\begin{split} & \text{Se}(8) - \text{Fe}(4) - \text{Se}(7) & 112.3 (3) & \text{Se}(10) - \text{Fe}(5) - \text{Se}(8) & 112.2 (3) \\ & \text{Se}(9) - \text{Fe}(4) - \text{Se}(7) & 115.9 (3) & \text{Se}(10) - \text{Fe}(5) - \text{Se}(9) & 111.9 (2) \\ & \text{Se}(14) - \text{Fe}(7) - \text{Se}(13) & 114.7 (3) & \text{Se}(17) - \text{Fe}(8) - \text{Se}(14) & 110.4 (2) \\ & \text{Se}(3) - \text{Fe}(1) - \text{Se}(2) & 106.2 (2) & \text{Se}(3) - \text{Fe}(2) - \text{Se}(2) & 104.8 (2) \\ & \text{Se}(3) - \text{Fe}(1) - \text{Se}(2) & 106.2 (2) & \text{Se}(3) - \text{Fe}(2) - \text{Se}(2) & 104.8 (2) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(2) & 111.4 (3) & \text{Se}(6) - \text{Fe}(3) - \text{Se}(4) & 114.0 (3) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(2) & 111.4 (3) & \text{Se}(6) - \text{Fe}(3) - \text{Se}(4) & 114.0 (3) \\ & \text{Se}(1) - \text{Fe}(3) - \text{Se}(8) & 111.4 (2) & \text{Se}(12) - \text{Fe}(6) - \text{Se}(10) & 114.3 (3) \\ & \text{Se}(16) - \text{Fe}(3) - \text{Se}(5) & 111.8 (3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(11) & 110.4 (3) \\ & \text{Se}(16) - \text{Fe}(3) - \text{Se}(15) & 110.3 (2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(17) & 109.2 (2) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(4) & 106.4 (2) & \text{Se}(5) - \text{Fe}(3) - \text{Se}(16) & 106.1 (2) \\ & \text{Se}(17) - \text{Fe}(3) - \text{Se}(5) & 110.1 (3) & \text{Se}(6) - \text{Fe}(3) - \text{Se}(16) & 106.1 (2) \\ & \text{Se}(17) - \text{Fe}(3) - \text{Se}(5) & 110.1 (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & 105.2 (2) \\ & \text{Se}(18) - \text{Fe}(6) - \text{Se}(11) & 107.9 (3) \\ & \text{Se}(18) - \text{Fe}(6) - \text{Se}(11) & 107.9 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(12) & 105.2 (2) \\ & \text{Se}(18) - \text{Fe}(6) - \text{Se}(11) & 107.9 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 109.2 (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 107.0 (2) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) \\ & \text{In} \ \ \text{Fe}_4(\mu_2 \cdot \text{Se}) \text{ Jidgehead} \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) & 105.6 (2) \\ & \text{man} & 106.5 (3) \ \ \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - $	Se(3)-Fe(1)-Se(1)	117.6 (3)	Se(4)-Fe(2)-Se(3)	113.1 (3)
$\begin{split} & \text{Se}(9) - \text{Fe}(4) - \text{Se}(7) & 115.9 (3) & \text{Se}(10) - \text{Fe}(5) - \text{Se}(14) & 110.4 (2) \\ & \text{Se}(13) - \text{Fe}(7) - \text{Se}(13) & 115.0 (3) & \text{Se}(17) - \text{Fe}(8) - \text{Se}(15) & 111.9 (3) \\ & \text{Se}(3) - \text{Fe}(1) - \text{Se}(2) & 106.2 (2) & \text{Se}(3) - \text{Fe}(2) - \text{Se}(2) & 104.8 (2) \\ & \text{Se}(15) - \text{Fe}(7) - \text{Se}(14) & 106.3 (2) & \text{Se}(15) - \text{Fe}(8) - \text{Se}(14) & 104.9 (2) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(2) & 111.4 (3) & \text{Se}(6) - \text{Fe}(3) - \text{Se}(4) & 112.1 (3) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(2) & 111.4 (3) & \text{Se}(6) - \text{Fe}(3) - \text{Se}(4) & 112.1 (3) \\ & \text{Se}(15) - \text{Fe}(3) - \text{Se}(8) & 111.4 (2) & \text{Se}(12) - \text{Fe}(6) - \text{Se}(10) & 114.4 (3) \\ & \text{Se}(15) - \text{Fe}(3) - \text{Se}(8) & 111.4 (3) & \text{Se}(13) - \text{Fe}(9) - \text{Se}(12) & 113.1 (3) \\ & \text{Se}(15) - \text{Fe}(3) - \text{Se}(9) & 111.8 (3) & \text{Se}(13) - \text{Fe}(9) - \text{Se}(12) & 113.1 (3) \\ & \text{Se}(15) - \text{Fe}(3) - \text{Se}(14) & 110.3 (2) & \text{Se}(15) - \text{Fe}(3) - \text{Se}(14) & 106.4 (2) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(10) & 106.4 (2) & \text{Se}(1) - \text{Fe}(5) - \text{Se}(10) & 104.4 (2) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(10) & 106.1 (2) & \text{Se}(11) - \text{Fe}(5) - \text{Se}(10) & 108.1 (2) \\ & \text{Se}(6) - \text{Fe}(3) - \text{Se}(15) & 110.1 (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & 105.2 (2) \\ & \text{Se}(6) - \text{Fe}(3) - \text{Se}(1) & 107.9 (3) \\ & \text{Se}(13) - \text{Fe}(0) - \text{Se}(1) & 107.9 (3) \\ & \text{Se}(13) - \text{Fe}(0) - \text{Se}(1) & 113.8 (3) \\ & \text{mean} & 112 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 109.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(2) - \text{Se}(1) & 105.8 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 (2$	Se(8)-Fe(4)-Se(7)	112.3 (3)	Se(10)-Fe(5)-Se(8)	112.2 (3)
$\begin{split} & \text{Se}(14) - \text{Fe}(7) - \text{Se}(13) & 114.7 (3) & \text{Se}(17) - \text{Fe}(8) - \text{Se}(14) & 110.4 (2) \\ & \text{Se}(15) - \text{Fe}(7) - \text{Se}(13) & 115.0 (3) & \text{Se}(17) - \text{Fe}(8) - \text{Se}(15) & 111.9 (3) \\ & \text{Se}(3) - \text{Fe}(1) - \text{Se}(2) & 106.2 (2) & \text{Se}(3) - \text{Fe}(2) - \text{Se}(2) & 104.8 (2) \\ & \text{Se}(3) - \text{Fe}(7) - \text{Se}(14) & 106.3 (2) & \text{Se}(15) - \text{Fe}(8) - \text{Se}(14) & 104.9 (2) \\ & \text{Se}(5) - \text{Fe}(7) - \text{Se}(14) & 106.3 (2) & \text{Se}(15) - \text{Fe}(8) - \text{Se}(14) & 114.0 (3) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(3) & 111.4 (3) & \text{Se}(15) - \text{Fe}(6) - \text{Se}(10) & 114.4 (3) \\ & \text{Se}(11) - \text{Fe}(5) - \text{Se}(8) & 111.4 (2) & \text{Se}(12) - \text{Fe}(6) - \text{Se}(10) & 114.3 (3) \\ & \text{Se}(15) - \text{Fe}(8) - \text{Se}(15) & 110.3 (2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(17) & 109.2 (2) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(14) & 113.7 (3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(10) & 106.1 (2) \\ & \text{Se}(1) - \text{Fe}(8) - \text{Se}(16) & 105.7 (2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(16) & 106.1 (2) \\ & \text{Se}(6) - \text{Fe}(3) - \text{Se}(16) & 105.7 (2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(16) & 106.1 (2) \\ & \text{Se}(6) - \text{Fe}(3) - \text{Se}(5) & 109.9 (3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(10) & 108.1 (2) \\ & \text{Se}(13) - \text{Fe}(6) - \text{Se}(11) & 113.3 (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & 105.2 (2) \\ & \text{Se}(13) - \text{Fe}(6) - \text{Se}(11) & 113.3 (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & 105.2 (2) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 109.2 (3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 111.4 (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 105.6 (2) \\ & \text{mean} & 112 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 105.6 (2) \\ & \text{Se}(19) - $	Se(9)-Fe(4)-Se(7)	115.9 (3)	Se(10) - Fe(5) - Se(9)	111.9 (2)
$\begin{split} & \text{Se}(15)-\text{Fe}(7)-\text{Se}(13) & 115.0 & (3) & \text{Se}(17)-\text{Fe}(8)-\text{Se}(15) & 111.9 & (3) \\ & \text{Se}(3)-\text{Fe}(4)-\text{Se}(3) & 105.2 & (3) & \text{Se}(3)-\text{Fe}(2)-\text{Se}(2) & 104.8 & (2) \\ & \text{Se}(3)-\text{Fe}(4)-\text{Se}(3) & 105.2 & (3) & \text{Se}(3)-\text{Fe}(3)-\text{Se}(4) & 104.9 & (2) \\ & \text{Se}(5)-\text{Fe}(2)-\text{Se}(2) & 111.4 & (3) & \text{Se}(5)-\text{Fe}(3)-\text{Se}(4) & 114.0 & (3) \\ & \text{Se}(5)-\text{Fe}(2)-\text{Se}(2) & 111.4 & (3) & \text{Se}(6)-\text{Fe}(3)-\text{Se}(4) & 110.4 & (3) \\ & \text{Se}(1)-\text{Fe}(5)-\text{Se}(8) & 111.4 & (2) & \text{Se}(12)-\text{Fe}(6)-\text{Se}(10) & 110.4 & (3) \\ & \text{Se}(1)-\text{Fe}(8)-\text{Se}(15) & 110.3 & (2) & \text{Se}(17)-\text{Fe}(9)-\text{Se}(12) & 113.1 & (3) \\ & \text{Se}(15)-\text{Fe}(8)-\text{Se}(14) & 113.7 & (3) & \text{Se}(18)-\text{Fe}(9)-\text{Se}(12) & 106.6 & (2) \\ & \text{Se}(5)-\text{Fe}(2)-\text{Se}(4) & 106.4 & (2) & \text{Se}(5)-\text{Fe}(3)-\text{Se}(16) & 106.1 & (2) \\ & \text{Se}(1)-\text{Fe}(5)-\text{Se}(16) & 105.7 & (2) & \text{Se}(17)-\text{Fe}(6)-\text{Se}(10) & 108.1 & (2) \\ & \text{Se}(1)-\text{Fe}(5)-\text{Se}(16) & 105.7 & (2) & \text{Se}(17)-\text{Fe}(6)-\text{Se}(10) & 108.1 & (2) \\ & \text{Se}(6)-\text{Fe}(3)-\text{Se}(5) & 110.1 & (3) & \text{Se}(18)-\text{Fe}(9)-\text{Se}(12) & 102.9 & (2) \\ & \text{Se}(6)-\text{Fe}(3)-\text{Se}(5) & 110.1 & (3) & \text{Se}(18)-\text{Fe}(9)-\text{Se}(12) & 102.9 & (2) \\ & \text{Se}(13)-\text{Fe}(9)-\text{Se}(12) & 109.6 & (3) \\ & \text{Se}(13)-\text{Fe}(9)-\text{Se}(11) & 113.3 & (3) \\ & \text{mean} & 112 & (2) \\ & (\mu_{a}\cdot\text{Se})-\mu_{a}(-\text{Se}) \text{Bridgehead} \\ & \text{Se}(7)-\text{Fe}(1)-\text{Se}(1) & 111.4 & (3) \\ & \text{Se}(13)-\text{Fe}(1)-\text{Se}(1) & 111.4 & (3) \\ & \text{Se}(13)-\text{Fe}(1)-\text{Se}(1) & 113.8 & (3) \\ & \text{mean} & 112 & (2) \\ & (\mu_{a}\cdot\text{Se})-\text{Fe}(1)-\text{Se}(3) & 106.7 & (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 & (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 108.7 & (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 113.4 & (3) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 113.4 & (3) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 106.7 & (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 & (2) & \text{Se}(19)-\text{Fe}(1) & 105.7 & (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 113.4 & (3) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 106.7 & (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 106.7 & (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 106.7 & (2) \\ & Se$	Se(14) - Fe(7) - Se(13)	114.7 (3)	Se(17) - Fe(8) - Se(14)	110.4 (2)
$\begin{split} & \text{Se}(3) - \text{Fe}(1) - \text{Se}(2) & 106.2 & (2) & \text{Se}(3) - \text{Fe}(2) - \text{Se}(3) & 103.6 & (2) \\ & \text{Se}(3) - \text{Fe}(3) - \text{Se}(3) & 105.2 & (3) & \text{Se}(3) - \text{Fe}(3) - \text{Se}(4) & 110.4 & (3) \\ & \text{Se}(3) - \text{Fe}(2) - \text{Se}(3) & 110.6 & (3) & \text{Se}(5) - \text{Fe}(3) - \text{Se}(4) & 112.1 & (3) \\ & \text{Se}(3) - \text{Fe}(5) - \text{Se}(3) & 111.4 & (3) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(1) & 110.4 & (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(3) & 111.4 & (3) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(1) & 110.4 & (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(9) & 111.8 & (3) & \text{Se}(13) - \text{Fe}(6) - \text{Se}(1) & 110.4 & (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(9) & 111.8 & (3) & \text{Se}(13) - \text{Fe}(6) - \text{Se}(1) & 110.4 & (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(1) & 100.3 & (2) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(1) & 100.4 & (2) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(1) & 100.4 & (2) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(1) & 100.4 & (2) \\ & \text{Se}(1) - \text{Fe}(8) - \text{Se}(1) & 100.4 & (2) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(1) & 100.4 & (2) \\ & \text{Se}(1) - \text{Fe}(3) - \text{Se}(1) & 100.5 & (2) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(1) & 100.4 & (2) \\ & \text{Se}(1) - \text{Fe}(3) - \text{Se}(5) & 100.9 & (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & 100.2 & (2) \\ & \text{Se}(18) - \text{Fe}(6) - \text{Se}(1) & 100.7 & (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(1) & 105.2 & (2) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 100.4 & (3) & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 100.4 & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 100.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 105.8 & (2) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 100.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 100.8 & (2) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & 100.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 100.8 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 105.8 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 105.8 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 105.7 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 & (2) & \text{Se}(19) - \text{Fe}(1) & 105.7 & (2) \\ & \text{Se}(19) - \text$	Se(15) - Fe(7) - Se(13)	115.0 (3)	Se(17)-Fe(8)-Se(15)	111.9 (3)
$\begin{aligned} & \text{Se}(9) - \text{Fe}(4) - \text{Se}(3) & \text{IOS.2}(3) & \text{Se}(9) - \text{Fe}(5) - \text{Se}(3) & \text{IOS.6}(2) \\ & \text{Se}(3) - \text{Fe}(7) - \text{Se}(14) & \text{IOS.3}(2) & \text{Se}(15) - \text{Fe}(3) - \text{Se}(14) & \text{IOA.6}(2) \\ & \text{Se}(5) - \text{Fe}(2) - \text{Se}(2) & \text{II1.4} & (3) & \text{Se}(6) - \text{Fe}(3) - \text{Se}(4) & \text{I14.0} & (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(8) & \text{II1.4} & (2) & \text{Se}(12) - \text{Fe}(6) - \text{Se}(10) & \text{II4.3} & (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(8) & \text{II1.8} & (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & \text{II3.1} & (3) \\ & \text{Se}(1) - \text{Fe}(8) - \text{Se}(14) & \text{II3.7} & (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & \text{II3.1} & (3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(10) & \text{IO6.1} & (2) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(10) & \text{IO6.1} & (2) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(10) & \text{IO6.1} & (2) & \text{Se}(1) - \text{Fe}(6) - \text{Se}(12) & \text{IO8.1} & (2) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(16) & \text{IO5.7} & (2) & \text{Se}(17) - \text{Fe}(6) - \text{Se}(12) & \text{IO2.9} & (2) \\ & \text{Se}(6) - \text{Fe}(3) - \text{Se}(16) & \text{IO5.7} & (2) & \text{Se}(13) - \text{Fe}(6) - \text{Se}(12) & \text{IO2.9} & (2) \\ & \text{Se}(6) - \text{Fe}(3) - \text{Se}(11) & \text{IO7.9} & (3) \\ & \text{Se}(13) - \text{Fe}(0) - \text{Se}(11) & \text{IO7.9} & (3) \\ & \text{Se}(13) - \text{Fe}(0) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & \text{Se}(13) - \text{Fe}(1) - \text{Se}(1) & \text{II1.4} & (3) \\ & S$	Se(3) - Fe(1) - Se(2)	106.2 (2)	Se(3) - Fe(2) - Se(2)	104.8 (2)
$\begin{split} & \text{Sc(13)-Fe(7)-Se(14)} 106.3 (2) Se(13)-Fe(8)-Se(14) 114.0 (3) \\ & \text{Sc(3)-Fe(2)-Se(2)} 111.4 (3) Se(6)-Fe(3)-Se(4) 112.1 (3) \\ & \text{Sc(1)-Fe(5)-Se(8)} 111.4 (2) Se(12)-Fe(6)-Se(10) 110.4 (3) \\ & \text{Sc(1)-Fe(5)-Se(9)} 111.8 (3) Se(13)-Fe(9)-Se(12) 113.1 (3) \\ & \text{Sc(1)-Fe(8)-Se(15)} 110.3 (2) Se(17)-Fe(9)-Se(12) 113.1 (3) \\ & \text{Sc(1)-Fe(8)-Se(16)} 106.1 (2) Se(17)-Fe(9)-Se(11) 105.2 (2) \\ & \text{Sc(1)-Fe(8)-Se(16)} 106.1 (2) Se(17)-Fe(9)-Se(16) 106.1 (2) \\ & \text{Sc(1)-Fe(8)-Se(16)} 105.7 (2) Se(17)-Fe(9)-Se(16) 106.1 (2) \\ & \text{Sc(1)-Fe(8)-Se(16)} 105.7 (2) Se(17)-Fe(9)-Se(16) 106.1 (2) \\ & \text{Sc(1)-Fe(6)-Se(1)} 101.3 & \text{Sc(6)-Fe(3)-Se(6)} 104.2 (2) \\ & \text{Sc(1)-Fe(6)-Se(1)} 103.3 & \text{Sc(18)-Fe(9)-Se(12)} 105.2 (2) \\ & \text{Sc(1)-Fe(6)-Se(1)} 107.9 (3) \\ & \text{Sc(18)-Fe(9)-Se(16)} 113.3 & \text{(3)} \\ & \text{Sc(18)-Fe(9)-Se(16)} 113.8 & \text{(3)} \\ & \text{Sc(13)-Fe(10)-Se(1)} 109.2 & \text{(3)} \\ & \text{Sc(13)-Fe(10)-Se(1)} 109.2 & \text{(3)} \\ & \text{Sc(13)-Fe(10)-Se(1)} 104.4 & \text{(3)} \\ & \text{Sc(13)-Fe(1)-Se(1)} 106.4 & \text{(2)} \text{Sc(19)-Fe(1)-Se(2)} 105.8 & \text{(2)} \\ & \text{Sc(19)-Fe(1)-Se(1)} 106.4 & \text{(2)} \text{Sc(19)-Fe(1)-Se(2)} 108.7 & \text{(2)} \\ & \text{Sc(19)-Fe(1)-Se(1)} 106.4 & \text{(2)} \text{Sc(19)-Fe(1)} & \text{(3)} & \text{(2)} \\ & \text{Sc(19)-Fe(1)-Se(1)} 106.4 & \text{(2)} \text{Sc(19)-Fe(1)} & \text{(3)} & \text{(3)} \\ & \text{Sc(19)-Fe(1)-Se(1)} 106.4 & \text{(2)} \text{Sc(19)-Fe(1)} & \text{(3)} & \text{(2)} \\ & \text{Sc(19)-Fe(1)-Se(1)} 106.4 & \text{(2)} \text{Sc(19)-Fe(1)} & \text{(3)} & \text{(3)} \\ & \text{mean} 107.1 (9) \\ & \text{Sc(19)-Fe(1)} 71.3 & \text{(2)} & \text{Sc(19)-Fe(1)} 105.4 & \text{(2)} \\ & \text{Sc(19)-Fe(1)-Se(1)} & 106.2 & \text{(3)} & \text{Sc(19)-Fe(1)} & \text{(1)} & \text{(2)} \\ & \text{Sc(19)-Fe(1)-Fe(1)} & 71.3 & \text{(2)} & \text{Sc(1)} & \text{(3)} & \text{(3)} \\ & Sc(19)-Fe($	Se(9) - Fe(4) - Se(8)	105.2(2)	Se(9) - Fe(5) - Se(8)	103.6(2)
$\begin{aligned} & \text{Set}(3) - \text{Fe}(2) - \text{Set}(4) & \text{It}(3) & \text{Set}(4) - \text{Fe}(3) - \text{Set}(4) & \text{It}(4) & (3) \\ & \text{Set}(3) - \text{Fe}(3) - \text{Set}(3) & \text{It}(4) & (3) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(8) & \text{It}(4) & (2) & \text{Set}(3) - \text{Fe}(6) - \text{Set}(1) & \text{It}(4) & (3) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(9) & \text{It}(1) & (3) & \text{Set}(3) - \text{Fe}(6) - \text{Set}(1) & \text{It}(4) & (3) \\ & \text{Set}(3) - \text{Fe}(8) - \text{Set}(14) & \text{It}(3) & (3) & \text{Set}(3) - \text{Fe}(6) - \text{Set}(1) & \text{It}(4) & (3) \\ & \text{Set}(3) - \text{Fe}(8) - \text{Set}(14) & \text{It}(3) & (3) & \text{Set}(13) - \text{Fe}(6) - \text{Set}(1) & \text{It}(4) & (3) \\ & \text{Set}(3) - \text{Fe}(8) - \text{Set}(14) & \text{It}(3) & (3) & \text{Set}(13) - \text{Fe}(9) - \text{Set}(12) & \text{It}(3) & (14) & (2) \\ & \text{Set}(3) - \text{Fe}(5) - \text{Set}(1) & \text{It}(6) & \text{L}(2) & \text{Set}(1) - \text{Fe}(6) - \text{Set}(1) & \text{It}(6) & \text{L}(2) \\ & \text{Set}(3) - \text{Fe}(5) - \text{Set}(1) & \text{It}(6) & \text{L}(2) & \text{Set}(1) - \text{Fe}(6) - \text{Set}(1) & \text{It}(6) & \text{L}(2) \\ & \text{Set}(6) - \text{Fe}(3) - \text{Set}(1) & \text{It}(3) & \text{Set}(13) - \text{Fe}(6) - \text{Set}(1) & \text{It}(6) & \text{L}(2) \\ & \text{Set}(3) - \text{Fe}(6) - \text{Set}(1) & \text{It}(3) & \text{Set}(13) - \text{Fe}(6) - \text{Set}(1) & \text{It}(3) & \text{Set}(13) - \text{Fe}(6) - \text{Set}(1) & \text{It}(3) & \text{Set}(13) - \text{Fe}(6) - \text{Set}(1) & \text{It}(1) & \text{L}(3) \\ & \text{Set}(13) - \text{Fe}(1) - \text{Set}(1) & \text{It}(1) & \text{L}(3) & \text{Set}(13) - \text{Fe}(1) - \text{Set}(1) & \text{It}(3) & \text{Set}(13) - \text{Fe}(1) - \text{Set}(1) & \text{It}(4) & \text{L}(3) \\ & \text{Set}(13) - \text{Fe}(1) - \text{Set}(1) & \text{It}(4) & \text{L}(3) & \text{Set}(1) - \text{Fe}(1) - \text{Set}(3) & \text{It}(3) & \text{It}(2) \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) & \text{It}(4) & \text{L}(2) & \text{Set}(1) - \text{Fe}(1) - \text{Set}(3) & \text{It}(3) & \text{It}(2) \\ & \text{Set}(1) - \text{Fe}(1) - \text{Set}(1) & \text{It}(4) & \text{L}(2) & \text{Set}(1) - \text{Fe}(1) - \text{Set}(3) & \text{It}(3) & \text{It}(3) \\ & \text{Set}(1) - \text{Fe}(1) - \text{Set}(1) & \text{It}(4) & \text{L}(2) & \text{Set}(1) - \text{Fe}(1) - \text{Set}(3) & \text{It}(3) & \text{It}(2) \\ & \text{Set}(1) - \text{Fe}(1) - \text{Set}(1) & \text{It}(4) & \text{L}(2) & \text{Set}(1) - \text{Fe}(1) & \text{It}(3) & \text{It}(2) \\ & \text{Set}(1) - \text{Fe}(1) - \text{Set}(1) & \text{It}(4) & \text{Set}(1) - \text{Fe}(1) - \text{Set}(3) & $	Se(15) - Fe(7) - Se(14)	106.2(3)	Se(15) - Fe(8) - Se(14)	103.0(2)
$\begin{split} & \text{Se}(3) - \text{Fe}(2) - \text{Se}(4) & 11.4.(3) & \text{Se}(6) - \text{Fe}(3) - \text{Se}(4) & 112.1.(3) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(8) & 111.4.(2) & \text{Se}(12) - \text{Fe}(6) - \text{Se}(10) & 110.4.(3) \\ & \text{Se}(1) - \text{Fe}(8) - \text{Se}(15) & 110.3.(2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(17) & 109.2.(2) \\ & \text{Se}(15) - \text{Fe}(8) - \text{Se}(14) & 113.7.(3) & \text{Se}(13) - \text{Fe}(6) - \text{Se}(10) & 108.1.(2) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(10) & 106.1.(2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(17) & 109.2.(2) \\ & \text{Se}(1) - \text{Fe}(5) - \text{Se}(10) & 106.1.(2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(16) & 106.1.(2) \\ & \text{Se}(17) - \text{Fe}(8) - \text{Se}(16) & 105.7.(2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(16) & 106.1.(2) \\ & \text{Se}(6) - \text{Fe}(3) - \text{Se}(5) & 110.1.(3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(10) & 108.1.(2) \\ & \text{Se}(12) - \text{Fe}(6) - \text{Se}(11) & 110.3.(3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(12) & 102.9.(2) \\ & \text{Se}(12) - \text{Fe}(6) - \text{Se}(11) & 110.7.9.(3) \\ & \text{Se}(18) - \text{Fe}(6) - \text{Se}(11) & 107.9.(3) \\ & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & 109.6.(3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 111.4.(3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 111.4.(3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 111.4.(3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 111.4.(3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 110.4.(3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 100.4.(2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 105.8.(2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 100.4.(2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7.(2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 100.4.(2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7.(2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 100.4.(2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 105.6.(2) \\ & \text{mean} & 106.5.(3) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 105.6.(2) \\ & \text{mean} & 106.5.(3) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 105.6.(2) \\ & \text{mean} & 107.1.(9) \\ & \text{Fe}(\mu_2 - \text{Se}) - \text{Fe} \\ & \text{In Fe}_{4}(\mu_2 - \text{Se}) - \text{Ic} \\ & \text{In Fe}_{4}(\mu_2 - \text{Se}) - Ic$	$S_{2}(12) = 10(12) = 10(14)$	100.5(2)	$S_{2}(12) = 10(0) = S_{2}(12)$	104.2(2)
$\begin{split} & \text{Set}(3) - \text{Fet}(2) - \text{Set}(3) & \text{It}(0, 6, (3) & \text{Set}(5) - \text{Fet}(3) - \text{Set}(4) & \text{It}(2, 1, (4), (3) \\ & \text{Set}(1) - \text{Fet}(5) - \text{Set}(3) & \text{It}(1, 4, (3) \\ & \text{Set}(1) - \text{Fet}(5) - \text{Set}(3) & \text{It}(1, 3, (3) \\ & \text{Set}(6) - \text{Fet}(8) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(6) - \text{Fet}(8) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(6) - \text{Fet}(8) - \text{Set}(4) & \text{It}(3, 7) \\ & \text{Set}(3) - \text{Fet}(8) - \text{Set}(4) & \text{It}(3, 7) \\ & \text{Set}(3) - \text{Fet}(9) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(5) - \text{Set}(1) & \text{It}(6, 1, (2) & \text{Set}(1) - \text{Fet}(6) - \text{Set}(1) \\ & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(5) - \text{Set}(1) & \text{It}(5, 1, (2) & \text{Set}(1) - \text{Fet}(6) - \text{Set}(1) \\ & \text{It}(3, 3) \\ & \text{Set}(3) - \text{Fet}(3) - \text{Set}(5) & \text{It}(0, 1, (3) & \text{Set}(8) - \text{Fet}(9) - \text{Set}(12) \\ & \text{It}(2, 3) \\ & \text{Set}(3) - \text{Fet}(6) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(6) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(6) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(3, 3) \\ & \text{set}(3) - \text{Fet}(0) - \text{Set}(1) & \text{It}(4, 3) \\ & \text{Set}(1) - \text{Fet}(0) - \text{Set}(1) & \text{It}(4, 3) \\ & \text{Set}(1) - \text{Fet}(1) - \text{Set}(1) & \text{It}(4, 3) \\ & \text{Set}(1) - \text{Fet}(1) - \text{Set}(1) & \text{It}(5, 3) \\ & \text{Set}(1) - \text{Fet}(1) - \text{Set}(2) & \text{It}(3, 3) \\ & \text{It}(1) - \text{Fet}(1) - \text{Set}(2) & \text{It}(4) \\ & \text{Set}(1) - \text{Fet}(1) - \text{Set}(3) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(1) - \text{Set}(3) & \text{It}(3, 3) \\ & \text{Set}(1) - \text{Fet}(1) - \text{Set}(3) & \text{It}(3, 3) \\ & $	Se(5) - Fe(2) - Se(2)	111.4 (3)	Se(6) - Fe(3) - Se(4)	114.0 (3)
$\begin{split} & \text{Set}(1) - \text{Fe}(5) - \text{Set}(1) & 110.4 (3) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(1) & 111.4 (2) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(1) & 111.4 (3) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(1) & 113.1 (3) \\ & \text{Set}(1) - \text{Fe}(8) - \text{Set}(1) & 113.1 (3) \\ & \text{Set}(1) - \text{Fe}(8) - \text{Set}(1) & 113.1 (3) \\ & \text{Set}(1) - \text{Fe}(8) - \text{Set}(1) & 106.1 (2) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(1) & 106.1 (2) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(1) & 106.1 (2) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(1) & 106.1 (2) \\ & \text{Set}(1) - \text{Fe}(5) - \text{Set}(1) & 105.1 (2) \\ & \text{Set}(2) - \text{Fe}(3) - \text{Set}(5) & 110.1 (3) \\ & \text{Set}(6) - \text{Fe}(3) - \text{Set}(5) & 100.1 (3) \\ & \text{Set}(6) - \text{Fe}(3) - \text{Set}(5) & 100.1 (3) \\ & \text{Set}(1) - \text{Fe}(6) - \text{Set}(1) & 103.2 (2) \\ & \text{Set}(2) - \text{Fe}(6) - \text{Set}(1) & 113.3 (3) \\ & \text{Set}(13) - \text{Fe}(6) - \text{Set}(1) & 107.9 (3) \\ & \text{Set}(13) - \text{Fe}(9) - \text{Set}(1) & 107.9 (3) \\ & \text{Set}(13) - \text{Fe}(9) - \text{Set}(1) & 107.9 (3) \\ & \text{Set}(3) - \text{Fe}(9) - \text{Set}(1) & 107.9 (3) \\ & \text{Set}(3) - \text{Fe}(0) - \text{Set}(1) & 107.9 (3) \\ & \text{Set}(3) - \text{Fe}(1) - \text{Set}(1) & 107.9 (3) \\ & \text{Set}(3) - \text{Fe}(1) - \text{Set}(1) & 107.9 (3) \\ & \text{Set}(3) - \text{Fe}(1) - \text{Set}(1) & 111.4 (3) \\ & \text{Set}(3) - \text{Fe}(1) - \text{Set}(1) & 111.4 (3) \\ & \text{Set}(3) - \text{Fe}(1) - \text{Set}(1) & 111.4 (3) \\ & \text{Set}(3) - \text{Fe}(1) - \text{Set}(1) & 106.4 (2) & \text{Set}(19) - \text{Fe}(1) - \text{Set}(3) & 108.8 (2) \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) & 106.4 (2) & \text{Set}(19) - \text{Fe}(1) - \text{Set}(3) & 108.7 (2) \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) & 106.4 (2) & \text{Set}(19) - \text{Fe}(1) - \text{Set}(3) & 105.6 (2) \\ & \text{mean} & 106.5 (3) & \text{Set}(19) - \text{Fe}(1) - \text{Set}(3) & 105.6 (2) \\ & \text{mean} & 106.5 (3) & \text{Set}(19) - \text{Fe}(1) - \text{Set}(3) & 105.7 (2) \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) & 106.4 (2) & \text{Set}(19) - \text{Fe}(1) & 108.4 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Set}(1) & 106.4 (2) & \text{Se}(19) - \text{Fe}(1) & 108.4 (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Set}(1) & 106.6 (2) \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) & 106.6 (2) \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) & 106.6 (2) \\ & \text{Set}($	Se(5) - Fe(2) - Se(3)	110.6 (3)	Se(6') - Fe(3) - Se(4)	112.1 (3)
$\begin{split} & \text{Set}(1) - \text{Fe}(3) - \text{Set}(9) & 111.8 \text{ (3)} & \text{Set}(18) - \text{Fe}(6) - \text{Set}(10) & 114.3 \text{ (3)} \\ & \text{Set}(3) - \text{Fe}(8) - \text{Set}(3) & 110.3 \text{ (2)} & \text{Set}(13) - \text{Fe}(9) - \text{Set}(12) & 113.1 \text{ (3)} \\ & \text{Set}(3) - \text{Fe}(8) - \text{Set}(14) & 113.7 \text{ (3)} & \text{Set}(18) - \text{Fe}(9) - \text{Set}(11) & 109.2 \text{ (2)} \\ & \text{Set}(13) - \text{Fe}(8) - \text{Set}(16) & 106.1 \text{ (2)} & \text{Set}(13) - \text{Fe}(6) - \text{Set}(11) & 108.1 \text{ (2)} \\ & \text{Set}(13) - \text{Fe}(8) - \text{Set}(5) & 100.1 \text{ (3)} & \text{Set}(18) - \text{Fe}(9) - \text{Set}(16) & 106.1 \text{ (2)} \\ & \text{Set}(2) - \text{Fe}(3) - \text{Set}(5) & 109.9 \text{ (3)} & \text{Set}(18) - \text{Fe}(9) - \text{Set}(12) & 102.9 \text{ (2)} \\ & \text{Set}(2) - \text{Fe}(6) - \text{Set}(11) & 110.3 \text{ (3)} & \text{Set}(18) - \text{Fe}(9) - \text{Set}(12) & 105.2 \text{ (2)} \\ & \text{Set}(18) - \text{Fe}(6) - \text{Set}(11) & 107.9 \text{ (3)} \\ & \text{Set}(18) - \text{Fe}(6) - \text{Set}(11) & 107.9 \text{ (3)} \\ & \text{Set}(18) - \text{Fe}(9) - \text{Set}(12) & 109.4 \text{ (3)} \\ & \text{Set}(13) - \text{Fe}(10) - \text{Set}(1) & 109.2 \text{ (3)} \\ & \text{Set}(13) - \text{Fe}(10) - \text{Set}(1) & 109.2 \text{ (3)} \\ & \text{Set}(13) - \text{Fe}(10) - \text{Set}(1) & 111.4 \text{ (3)} \\ & \text{Set}(13) - \text{Fe}(10) - \text{Set}(1) & 106.4 \text{ (2)} & \text{Set}(19) - \text{Fe}(1) - \text{Set}(2) \\ & \text{In } \text{ Fe}_4(\mu_2 - \text{Set})(\mu_4 - \text{Se}) \text{ Bridgehead} \\ \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) & 106.4 \text{ (2)} & \text{Set}(19) - \text{Fe}(1) - \text{Set}(2) \\ & \text{In } \text{Fe}_4(\mu_2 - \text{Set})(\mu_4 - \text{Set}) \text{ Bridgehead} \\ \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) & 106.2 \text{ (3)} & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) \\ & \text{In } 111.2 \text{ (3)} \\ & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) \\ & \text{In } 106.5 \text{ (3)} & \text{Set}(19) - \text{Fe}(1) - \text{Set}(1) \\ & \text{In } 108.4 \text{ (2)} & \text{Se}(19) - \text{Fe}(1) - \text{Set}(1) \\ & \text{In } 108.4 \text{ (2)} \\ \\ & \text{Se}(19) - \text{Fe}(1) - \text{Set}(1) \\ & 106.7 \text{ (2)} \\ & \text{mean} \\ & 107.1 \text{ (9)} \\ \\ & \text{mean} \\ & 107.1 \text{ (9)} \\ \\ & \text{mean} \\ & 107.1 \text{ (9)} \\ \\ & \text{Fe}(2) - \text{Se}(1) - \text{Fe}(1) \\ & 71.3 \text{ (2)} \\ & \text{Fe}(9) - \text{Se}(16) - \text{Fe}(1) \\ & 71.3 \text{ (2)} \\ & \text{Fe}(9) - \text{Se}(16) - \text{Fe}(1) \\ & 71.3 \text{ (2)} \\ & \text{Fe}(9) - \text{Se}(16) - \text{Fe}(1) \\ & 71.3 $	Se(11)-Fe(5)-Se(8)	111.4 (2)	Se(12) - Fe(6) - Se(10)	110.4 (3)
$\begin{split} & \text{Set}(15)-\text{Fet}(8)-\text{Set}(12) & \text{II}(3, 3) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(14) & \text{II}(3, 7) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(14) & \text{II}(3, 7) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(14) & \text{II}(3, 7) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(16) & \text{II}(3, 12) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(16) & \text{II}(3, 12) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(16) & \text{II}(5, 7) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(5) & \text{II}(3, 13) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(5) & \text{II}(3, 13) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(5) & \text{II}(3, 13) \\ & \text{Set}(3)-\text{Fet}(3)-\text{Set}(1) & \text{II}(3, 3) \\ & \text{Set}(3)-\text{Fet}(6)-\text{Set}(11) & \text{II}(3, 3) \\ & \text{Set}(3)-\text{Fet}(6)-\text{Set}(11) & \text{II}(3, 3) \\ & \text{Set}(3)-\text{Fet}(0)-\text{Set}(1) & \text{II}(3, 3) \\ & \text{mean} & \text{II}(2, 2) \\ & (\mu_4-\text{Se})-\text{Fet}(-(\mu_2-\text{Se}) \\ & \text{IIn} \text{ Fe}_4(\mu_2-\text{Se})_4(\mu_4-\text{Se}) \text{ Bridgehead} \\ & \text{Set}(19)-\text{Fet}(0)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1)-\text{Set}(2) & 105.8 & (2) \\ & \text{Set}(19)-\text{Fet}(0)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1) - 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1) & 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1) - 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-\text{Set}(1) & 106.4 & (2) & \text{Set}(19)-\text{Fet}(1) - 105.7 & (2) \\ & \text{Set}(19)-\text{Fet}(1)-S$	Se(11) - Fe(5) - Se(9)	111.8 (3)	Se(18') - Fe(6) - Se(10)	114.3 (3)
$\begin{split} & \text{Set}(15)-\text{Fe}(3)-\text{Set}(14) & 113.7 (3) & \text{Set}(18)-\text{Fe}(9)-\text{Set}(17) & 109.2 (2) \\ & \text{Set}(5)-\text{Fe}(2)-\text{Set}(4) & 106.4 (2) & \text{Set}(5)-\text{Fe}(3)-\text{Set}(4) & 106.6 (2) \\ & \text{Set}(17)-\text{Fe}(8)-\text{Set}(16) & 105.7 (2) & \text{Set}(17)-\text{Fe}(9)-\text{Set}(16) & 106.1 (2) \\ & \text{Set}(17)-\text{Fe}(3)-\text{Set}(5) & 110.1 (3) & \text{Set}(6)-\text{Fe}(3)-\text{Set}(5) & 104.2 (2) \\ & \text{Set}(6)-\text{Fe}(3)-\text{Set}(5) & 110.1 (3) & \text{Set}(18)-\text{Fe}(6)-\text{Set}(12) & 102.2 (2) \\ & \text{Set}(2)-\text{Fe}(6)-\text{Set}(11) & 113.3 (3) & \text{Set}(18)-\text{Fe}(9)-\text{Set}(12) & 102.2 (2) \\ & \text{Set}(13)-\text{Fe}(6)-\text{Set}(11) & 107.9 (3) \\ & \text{Set}(18)-\text{Fe}(9)-\text{Set}(12) & 109.2 (3) \\ & \text{Set}(18)-\text{Fe}(9)-\text{Set}(12) & 109.2 (3) \\ & \text{Set}(18)-\text{Fe}(9)-\text{Set}(11) & 110.4 (3) \\ & \text{Set}(13)-\text{Fe}(10)-\text{Set}(1) & 110.4 (3) \\ & \text{Set}(13)-\text{Fe}(10)-\text{Set}(1) & 106.4 (2) & \text{Set}(19)-\text{Fe}(1)-\text{Set}(2) & 105.8 (2) \\ & \text{Set}(13)-\text{Fe}(10)-\text{Set}(1) & 106.4 (2) & \text{Set}(19)-\text{Fe}(1)-\text{Set}(3) & 108.7 (2) \\ & \text{Set}(19)-\text{Fe}(1)-\text{Set}(1) & 106.4 (2) & \text{Set}(19)-\text{Fe}(4)-\text{Set}(9) & 111.2 (3) \\ & \text{mean} & 112 (2) \\ & \text{mean} & 106.5 (3) & \text{Se}(19)-\text{Fe}(1)-\text{Sec}(9) & 111.2 (3) \\ & \text{Set}(19)-\text{Fe}(1)-\text{Set}(1) & 106.4 (2) & \text{Set}(19)-\text{Fe}(4)-\text{Set}(9) & 105.6 (2) \\ & \text{mean} & 106.5 (3) & \text{Se}(19)-\text{Fe}(4)-\text{Set}(9) & 110.2 (3) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Set}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(4)-\text{Set}(9) & 110.2 (3) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Set}(1) & 106.7 (2) \\ & \text{mean} & 107.1 (9) \\ & \text{Fe}(4)-\text{Se}(1) & 106.2 (3) \\ & \text{mean} & 107.1 (9) \\ & \text{Fe}(2)-\text{Se}(3)-\text{Fe}(1) & 71.3 (2) \\ & \text{Fe}(3)-\text{Se}(1)-\text{Fe}(1) & 71.3 (2) \\ & \text{Fe}(3)-\text{Se}(1)-\text{Fe}(7) & 71.3 (2) \\ & \text{Fe}(3)-\text{Se}(9)-\text{Fe}(1) & 71.6 (2) & \text{Fe}(9)-\text{Se}(18)-\text{Fe}(6) & 71.0 (2) \\ & \text{Fe}(3)-\text{Se}(4)-\text{Fe}(2) & 75.0 (2) & \text{Fe}(3)-\text{Se}(1)-\text{Fe}(5) & 71.0 (2) \\ & \text{Fe}(3)-\text{Se}(1)-\text{Fe}(1) & 74.9 (2) \\ & \text{Fe}(3)-\text{Se}(1)-\text{Fe}(1) & 74.9 (2) \\ & \text{Fe}(3)-\text{Se}(1)-\text{Fe}(1) & 74.9 (2) \\ & \text{Fe}(10)-\text{Se}(1)-\text{Fe}(1) & 74.9 (2) \\ & \text{Fe}(10)-\text{Se}(1)-\text{Fe}(1) & 74.9 (2) \\ & \text{Fe}(10)-\text{Se}(1)-\text{Fe}(1)$	Se(16) - Fe(8) - Se(15)	110.3 (2)	Se(17) - Fe(9) - Se(127)	113.1 (3)
$\begin{split} & \text{Se(5)}-\text{Fe}(2)-\text{Se}(4) & 106.4 (2) & \text{Se}(5)-\text{Fe}(3)-\text{Se}(4) & 106.6 (2) \\ & \text{Se}(11)-\text{Fe}(8)-\text{Se}(10) & 106.1 (2) & \text{Se}(11)-\text{Fe}(6)-\text{Se}(10) & 108.1 (2) \\ & \text{Se}(17)-\text{Fe}(8)-\text{Se}(5) & 100.1 (2) & \text{Se}(17)-\text{Fe}(9)-\text{Se}(12) & 102.9 (2) \\ & \text{Se}(6)-\text{Fe}(3)-\text{Se}(5) & 109.9 (3) & \text{Se}(18)-\text{Fe}(9)-\text{Se}(12) & 102.9 (2) \\ & \text{Se}(18)-\text{Fe}(6)-\text{Se}(11) & 113.3 (3) & \text{Se}(18)-\text{Fe}(9)-\text{Se}(12) & 105.2 (2) \\ & \text{Se}(18)-\text{Fe}(9)-\text{Se}(12) & 109.6 (3) \\ & \text{Se}(18)-\text{Fe}(0)-\text{Se}(1) & 109.2 (3) \\ & \text{Se}(13)-\text{Fe}(10)-\text{Se}(1) & 113.8 (3) \\ & \text{In } \text{Fe}_4(\mu_2\text{-Se})_3(\mu_4\text{-Se) Bridgehead} \\ & \text{Se}(7)-\text{Fe}(10)-\text{Se}(1) & 110.4 (3) \\ & \text{Se}(13)-\text{Fe}(10)-\text{Se}(1) & 111.4 (3) \\ & \text{Se}(13)-\text{Fe}(10)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(2) & 105.8 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 108.7 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 108.7 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 108.7 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 108.7 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 108.4 (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 108.4 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 108.7 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1) & 105.7 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1) & 108.4 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1) & 108.4 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1) & 108.4 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1) & 108.4 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1) & 108.4 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.7 (2) & \text{mean} & 108.6 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.7 (2) & \text{mean} & 107.6 (2) \\ & \text{Fe}(1)-\text{Se}(1)-\text{Se}(1) & 106.2 (3) \\ & \text{mean} & 107.1 (9) \\ & \text{mean} & 107.1 (9) \\ & \text{mean} & 107.1 (9) \\ & \text{mean} & 101.6 (2$	Se(16) - Fe(8) - Se(14)	113.7 (3)	Se(18) - Fe(9) - Se(17)	109.2 (2)
$\begin{split} & \text{Se}(11)-\text{Fe}(5)-\text{Se}(10) 106.1 \ (2) \text{Se}(11)-\text{Fe}(6)-\text{Se}(10) 108.1 \ (2) \\ & \text{Se}(3)-\text{Fe}(3)-\text{Se}(5) 110.1 \ (3) \text{Se}(6)-\text{Fe}(3)-\text{Se}(6) 104.2 \ (2) \\ & \text{Se}(6)-\text{Fe}(3)-\text{Se}(5) 110.1 \ (3) \text{Se}(6)-\text{Fe}(3)-\text{Se}(12) 104.2 \ (2) \\ & \text{Se}(6)-\text{Fe}(3)-\text{Se}(5) 110.9 \ (3) \text{Se}(18)-\text{Fe}(6)-\text{Se}(12) 105.2 \ (2) \\ & \text{Se}(18)-\text{Fe}(6)-\text{Se}(11) 117.9 \ (3) \\ & \text{Se}(16)-\text{Fe}(9)-\text{Se}(12) 109.6 \ (3) \\ & \text{Se}(16)-\text{Fe}(9)-\text{Se}(12) 109.2 \ (3) \\ & \text{Se}(13)-\text{Fe}(10)-\text{Se}(1) 111.4 \ (3) \\ & \text{Se}(13)-\text{Fe}(10)-\text{Se}(1) 106.4 \ (2) \text{Se}(19)-\text{Fe}(1)-\text{Se}(2) 105.8 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 106.4 \ (2) \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) 108.7 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 106.4 \ (2) \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) 108.7 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 106.4 \ (2) \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) 108.7 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 106.4 \ (2) \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) 108.4 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 108.4 \ (2) \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 105.7 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 108.4 \ (2) \ \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 105.7 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 108.4 \ (2) \ \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 105.7 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 108.4 \ (2) \ \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 108.4 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 108.4 \ (2) \ \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 108.4 \ (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) 106.2 \ (3) \ \text{mean} 107.1 \ (9) \\ & \text{Fe}(2)-\text{Se}(3)-\text{Fe}(1) 71.3 \ (2) \ \text{Fe}(3)-\text{Se}(6)-\text{Fe}(3) 71.9 \ (2) \\ & \text{Fe}(3)-\text{Se}(9)-\text{Fe}(1) 71.3 \ (2) \ \text{Fe}(3)-\text{Se}(1)-\text{Fe}(5) 71.0 \ (2) \\ & \text{Fe}(3)-\text{Se}(4)-\text{Fe}(2) 75.0 \ (2) \ \text{Fe}(3)-\text{Se}(1)-\text{Fe}(5) 71.0 \ (2) \\ & \text{Fe}(3)-\text{Se}(4)-\text{Fe}(2) 75.0 \ (2) \ \text{Fe}(3)-\text{Se}(1)-\text{Fe}(5) 71.0 \ (2) \\ & \text{Fe}(3)-\text{Se}(4)-\text{Fe}(2) 75.0 \ ($	Se(5)-Fe(2)-Se(4)	106.4 (2)	Se(5)-Fe(3)-Se(4)	106.6 (2)
$\begin{split} & \text{Se}(17) - \text{Fe}(8) - \text{Se}(16) & 105.7 & (2) & \text{Se}(17) - \text{Fe}(9) - \text{Se}(16) & 106.1 & (2) \\ & \text{Se}(6) - \text{Fe}(3) - \text{Se}(5) & 110.1 & (3) & \text{Se}(18) - \text{Fe}(6) - \text{Se}(12) & 102.9 & (2) \\ & \text{Se}(12) - \text{Fe}(6) - \text{Se}(11) & 113.3 & (3) & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & 105.2 & (2) \\ & \text{Se}(18) - \text{Fe}(9) - \text{Se}(12) & 109.6 & (3) \\ & \text{Se}(18) - \text{Fe}(9) - \text{Se}(16) & 113.8 & (3) \\ & \text{In } \text{Fe}_4(\mu_2 \cdot \text{Se})_3(\mu_4 \cdot \text{Se}) & \text{Bridgehead} \\ & \text{Se}(7) - \text{Fe}(10) - \text{Se}(1) & 109.2 & (3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(1) & 110.4 & (3) \\ & \text{Se}(13) - \text{Fe}(10) - \text{Se}(7) & 113.8 & (3) \\ & \text{mean} & 112 & (2) \\ & (\mu_4 \cdot \text{Se}) - \text{Fe} - (\mu_2 \cdot \text{Se}) \\ & \text{In } \text{Fe}_4(\mu_2 \cdot \text{Se})_3(\mu_4 \cdot \text{Se}) & \text{Bridgehead} \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(2) & 105.8 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 108.7 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 & (2) & \text{Se}(19) - \text{Fe}(1) - \text{Se}(3) & 105.7 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.4 & (2) & \text{Se}(19) - \text{Fe}(4) - \text{Se}(9) & 111.2 & (3) \\ & \text{mean} & 106.5 & (3) & \text{Se}(19) - \text{Fe}(4) - \text{Se}(9) & 111.2 & (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 108.4 & (2) & \text{Se}(19) - \text{Fe}(4) - \text{Se}(9) & 111.2 & (3) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 108.4 & (2) & \text{Se}(19) - \text{Fe}(4) - \text{Se}(1) & 110.8 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 106.2 & (3) & \text{mean} & 108 & (2) \\ & \text{Se}(19) - \text{Fe}(1) - \text{Se}(1) & 110.6 & (2) & \text{Fe}(9) - \text{Se}(13) & 108 & (2) \\ & \text{Se}(19) - \text{Fe}(1) & 71.3 & (2) & \text{mean} & 71.3 & (4) \\ & \text{Fe}(8) - \text{Se}(1) - \text{Fe}(3) & 71.4 & (2) & \text{Fe}(9) - \text{Se}(1) - \text{Fe}(6) & 71.0 & (2) \\ & \text{Fe}(8) - \text{Se}(1) - \text{Fe}(7) & 71.3 & (2) & \text{mean} & 71.3 & (4) \\ & \text{Fe}(8) - \text{Se}(1) - \text{Fe}(7) & 71.3 & (2) & \text{mean} & 71.3 & (4) \\ & \text{Fe}(8) - \text{Se}(1) - \text{Fe}(7) & 71.3 & (2) & \text{Fe}(0) - \text{Se}(1) - \text{Fe}(8) & 73.0 & (2) \\ & \text{mean} & 71.6 & (5) \\ & \text{mean} & 71.6 & (5) \\ & \text{mean} & 71.6 & (2) & \text{Fe}(9) - $	Se(11)-Fe(5)-Se(10)	106.1 (2)	Se(11)-Fe(6)-Se(10)	108.1 (2)
$\begin{array}{c cccc} Se(6)-Fe(3)-Se(5) & 110.1 (3) & Se(6)-Fe(3)-Se(6') & 104.2 (2) \\ Se(6)-Fe(3)-Se(5) & 109.9 (3) & Se(18')-Fe(6)-Se(12) & 102.9 (2) \\ Se(12)-Fe(6)-Se(11) & 113.3 (3) & Se(18)-Fe(9)-Se(12') & 105.2 (2) \\ Se(18)-Fe(9)-Se(12') & 109.6 (3) \\ Se(18)-Fe(9)-Se(12') & 109.6 (3) \\ Se(13)-Fe(10)-Se(1) & 119.2 (3) \\ Se(13)-Fe(10)-Se(1) & 111.4 (3) \\ Se(13)-Fe(10)-Se(7) & 113.8 (3) \\ mean & 112 (2) \\ & (\mu_4 \cdot Se)-Fe-(\mu_2 \cdot Se) \\ In Fe_4(\mu_2 \cdot Se)_3(\mu_4 \cdot Se) Bridgehead \\ Se(19)-Fe(1)-Se(1) & 106.4 (2) & Se(19)-Fe(1)-Se(2) & 105.8 (2) \\ Se(19)-Fe(1)-Se(7) & 106.7 (2) & Se(19)-Fe(4)-Se(8) & 105.6 (2) \\ Se(19)-Fe(1)-Se(7) & 106.7 (2) & Se(19)-Fe(4)-Se(8) & 105.6 (2) \\ se(19)-Fe(10)-Se(1) & 107.0 (2) & Se(19)-Fe(4)-Se(8) & 105.6 (2) \\ se(19)-Fe(10)-Se(1) & 106.7 (2) & mean & 108 (2) \\ Se(19)-Fe(10)-Se(1) & 106.7 (2) & mean & 108 (2) \\ Se(19)-Fe(1)-Se(1) & 106.7 (2) & mean & 108 (2) \\ Se(19)-Fe(1)-Se(1) & 106.2 (3) & mean & 108 (2) \\ Se(19)-Fe(1)-Se(1) & 106.2 (3) & mean & 108 (2) \\ Se(19)-Fe(1)-Se(1) & 106.7 (2) & mean & 108 (2) \\ Se(19)-Fe(1)-Se(1) & 106.2 (3) & mean & 107.1 (9) \\ \hline Fe(2)-Se(2)-Fe(1) & 71.3 (2) & Fe(3)-Se(6)-Fe(3)' & 71.9 (2) \\ Fe(3)-Se(1)-Fe(7) & 71.3 (2) & mean & 71.3 (4) \\ Fe(3)-Se(1)-Fe(7) & 71.3 (2) & mean & 71.3 (4) \\ Fe(3)-Se(1)-Fe(7) & 71.3 (2) & mean & 71.3 (4) \\ Fe(3)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(5)-Fe(2) & 72.0 (2) \\ Fe(3)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(5)-Fe(2) & 72.0 (2) \\ Fe(1)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(5) & 71.0 (2) \\ Fe(1)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(5) & 71.0 (2) \\ Fe(10)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(5) & 73.4 (2) & Fe(3)-Se(1)-Fe(5) & 71.0 (2) \\ Fe(10)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(1) & 74.9 (2) \\ Fe(10)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(1) & 74.9 (2) \\ Fe(10)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(1) & 74.9 (2) \\ Fe(10)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(1) & 74.9 (2) \\ Fe(10)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(1) & 74.9 (2) \\ Fe(10)-Se(1)-Fe(1) & 74.9 (2) & Fe(3)-Se(1)-Fe(1) & 110.0 (2) \\ Fe(1)-Se(1)-Fe(1) & $	Se(17) - Fe(8) - Se(16)	105.7 (2)	Se(17) - Fe(9) - Se(16)	106.1 (2)
Se(6)-Fe(3)-Se(5) 109. (3) Se(18)-Fe(6)-Se(12) 102.9 (2) Se(12)-Fe(6)-Se(11) 113.3 (3) Se(18)-Fe(9)-Se(12) 105.2 (2) Se(18)-Fe(9)-Se(12) 109.6 (3) Se(18)-Fe(9)-Se(12) 109.2 (3) Se(13)-Fe(10)-Se(1) 111.4 (3) Se(13)-Fe(10)-Se(1) 111.4 (3) Se(13)-Fe(10)-Se(1) 111.4 (3) Se(13)-Fe(10)-Se(1) 111.4 (3) Se(13)-Fe(10)-Se(1) 111.4 (3) Se(13)-Fe(10)-Se(1) 106.2 (3) Se(19)-Fe(1)-Se(2) 105.8 (2) Se(19)-Fe(1)-Se(1) 106.4 (2) Se(19)-Fe(1)-Se(2) 105.8 (2) Se(19)-Fe(1)-Se(1) 106.4 (2) Se(19)-Fe(1)-Se(3) 108.7 (2) Se(19)-Fe(10)-Se(1) 106.2 (3) Se(19)-Fe(4)-Se(8) 105.6 (2) mean 106.5 (3) Se(19)-Fe(4)-Se(8) 105.6 (2) mean 106.5 (3) Se(19)-Fe(4)-Se(8) 111.2 (3) Se(19)-Fe(10)-Se(1) 108.4 (2) Se(19)-Fe(7)-Se(14) 105.7 (2) Se(19)-Fe(10)-Se(1) 108.4 (2) Se(19)-Fe(7)-Se(15) 108.4 (2) Se(19)-Fe(10)-Se(1) 106.2 (3) mean 107.1 (9) Fe(2)-Se(2)-Fe(1) 71.6 (2) Fe(9)-Se(12)-Fe(6) 71.9 (2) Fe(5)-Se(8)-Fe(4) 71.6 (2) Fe(9)-Se(18)-Fe(6') 70.9 (2) Fe(5)-Se(1)-Fe(7) 71.3 (2) mean 71.6 (5) Fe(3)-Se(1)-Fe(7) 71.3 (2) mean 71.6 (5) Fe(1)-Se(1)-Fe(7) 75.0 (2) Fe(3)-Se(5)-Fe(2) 72.0 (2) Fe(6)-Se(1)-Fe(7) 74.3 (2) mean 71.6 (5) Fe(1)-Se(1)-Fe(7) 76.1 (2) mean 74.1 (7) mean 72.0 (8) IIn Fe ₄ (μ_2 -Se) ₁ (μ_4 -Se) Bridgehead Fe(10)-Se(1)-Fe(1) 74.9 (2) Fe(10)-Se(1)-Fe(1) 74.9 (2) Fe(1)-Se(1)-Fe(1) 74.9 (2) Fe(1)-Se(1)-Fe(1) 74.9 (2) Fe(1)-Se(1)-Fe(4) 75.9 (2) Fe(1)-Se(1)-Fe(4) 75.9 (2) Fe(1)-Se(1)-Fe(1) 70.0 (2) Fe(7)-Se(19)-Fe(1) 110.0 (2) Fe(1)-Se(1)-Fe(1) 70.0 (2) Fe(7)-Se(19)-Fe(1) 110.0 (2) Fe(1)-Se(1)-Fe(1) 70.0 (2) Fe(7)-Se(19)-Fe(1) 100.3 (2) mean 75.6 (5) mean 70.7 (5) mean 109.6 (3)	Se(6) - Fe(3) - Se(5)	110.1 (3)	Se(6) - Fe(3) - Se(6')	104.2 (2)
$\begin{array}{c} {\rm Se(12)-Fe(6)-Se(11)} & 113. (3) & {\rm Se(18)-Fe(9)-Se(12)} & 105. (2) \\ {\rm Se(18)-Fe(9)-Se(12)} & 109. (3) \\ {\rm Se(18)-Fe(9)-Se(16)} & 113. (3) \\ {\rm In } Fe_4(\mu_2 \cdot Se)_3(\mu_4 \cdot Se) \ {\rm Bridgehead} \\ {\rm Se(7)-Fe(10)-Se(1)} & 109. 2 & (3) \\ {\rm Se(13)-Fe(10)-Se(1)} & 110. 4 & (3) \\ {\rm Se(13)-Fe(10)-Se(1)} & 111. 4 & (3) \\ {\rm Se(13)-Fe(1)-Se(1)} & 111. 4 & (3) \\ {\rm Se(13)-Fe(1)-Se(1)} & 111. 4 & (3) \\ {\rm Se(19)-Fe(1)-Se(1)} & 106. 4 & (2) \ {\rm Se(19)-Fe(1)-Se(2)} & 105. 8 & (2) \\ {\rm Se(19)-Fe(1)-Se(1)} & 106. 4 & (2) \ {\rm Se(19)-Fe(1)-Se(2)} & 108. 7 & (2) \\ {\rm Se(19)-Fe(1)-Se(1)} & 106. 4 & (2) \ {\rm Se(19)-Fe(1)-Se(2)} & 108. 7 & (2) \\ {\rm Se(19)-Fe(1)-Se(1)} & 106. 4 & (2) \ {\rm Se(19)-Fe(4)-Se(8)} & 105. 6 & (2) \\ {\rm mean} & 106. 5 & (3) \ {\rm Se(19)-Fe(4)-Se(9)} & 111. 2 & (3) \\ {\rm Se(19)-Fe(10)-Se(1)} & 108. 4 & (2) \ {\rm Se(19)-Fe(7)-Se(15)} & 108. 4 & (2) \\ {\rm Se(19)-Fe(10)-Se(7)} & 106. 7 & (2) \ {\rm mean} & 108. (2) \\ {\rm Se(19)-Fe(10)-Se(7)} & 106. 7 & (2) \ {\rm mean} & 108. (2) \\ {\rm Se(19)-Fe(1)-Se(1)} & 106. 2 & (3) \ {\rm mean} & 107. 1 & (9) \\ \\ {\rm mean} & 107. 1 & (9) \\ \\ {\rm Fe(2)-Se(2)-Fe(1)} & 71. 3 & (2) \ {\rm Fe(3)-Se(6)-Fe(3')} & 71. 9 & (2) \\ {\rm Fe(5)-Se(9)-Fe(4)} & 71. 6 & (2) \ {\rm Fe(9)-Se(18)-Fe(6')} & 71. 9 & (2) \\ {\rm Fe(5)-Se(9)-Fe(4)} & 71. 6 & (2) \ {\rm Fe(9)-Se(18)-Fe(6')} & 71. 9 & (2) \\ {\rm Fe(3)-Se(14)-Fe(7)} & 71. 3 & (2) \ {\rm mean} & 71. 3 & (4) \\ {\rm Fe(8)-Se(14)-Fe(7)} & 71. 3 & (2) \ {\rm mean} & 71. 3 & (4) \\ {\rm Fe(8)-Se(10)-Fe(7)} & 71. 3 & (2) \ {\rm mean} & 71. 3 & (4) \\ {\rm Fe(3)-Se(1)-Fe(5)} & 73. 4 & (2) \ {\rm Fe(3)-Se(5)-Fe(2)} & 72. 0 & (2) \\ {\rm Fe(3)-Se(4)-Fe(2)} & 75. 0 & (2) \ {\rm Fe(3)-Se(5)-Fe(2)} & 72. 0 & (2) \\ {\rm Fe(3)-Se(10)-Fe(5)} & 73. 4 & (2) \ {\rm Fe(3)-Se(5)-Fe(2)} & 72. 0 & (2) \\ {\rm Fe(10)-Se(1)-Fe(5)} & 73. 4 & (2) \ {\rm Fe(3)-Se(1)-Fe(5)} & 71. 0 & (2) \\ {\rm Fe(10)-Se(1)-Fe(1)} & 74. 9 & (2) \\ {\rm Fe(10)-Se(1)-Fe(4)} & 75. 9 & (2) \\ {\rm Fe(10)-Se(1)-Fe(1)} & 74. 9 & (2) \\ {\rm Fe(10)-Se(1)-Fe(1)} & 74. 9 & (2) \\ {\rm Fe(10)-Se(1)-Fe(1)} & 74. 9 & (2) \\ {\rm Fe(10)-Se(1)-Fe($	Se(6') - Fe(3) - Se(5)	109.9 (3)	Se(18') - Fe(6) - Se(12)	102.9(2)
Sec18) - Fe(6) - Se(11) 107.9 (3) Se(18) - Fe(6) - Se(12) 109.6 (3) Se(18) - Fe(9) - Se(12) 109.6 (3) Se(18) - Fe(9) - Se(12) 109.6 (3) Se(13) - Fe(10) - Se(1) 113.8 (3) mean 112 (2) $(\mu_4 - Se) - Fe - (\mu_2 - Se)$ In Fe ₄ ($\mu_2 - Se_3(\mu_4 - Se)$ Bridgehead Se(19) - Fe(1) - Se(1) 106.4 (2) Se(19) - Fe(1) - Se(2) 105.8 (2) Se(19) - Fe(4) - Se(7) 106.2 (3) Se(19) - Fe(1) - Se(3) 108.7 (2) Se(19) - Fe(4) - Se(7) 106.2 (3) Se(19) - Fe(1) - Se(3) 108.7 (2) Se(19) - Fe(1) - Se(13) 107.0 (2) Se(19) - Fe(4) - Se(8) 105.6 (2) mean 106.5 (3) Se(19) - Fe(4) - Se(9) 111.2 (3) Se(19) - Fe(1) - Se(11) 108.4 (2) Se(19) - Fe(4) - Se(14) 105.7 (2) Se(19) - Fe(1) - Se(1) 108.4 (2) Se(19) - Fe(7) - Se(14) 105.7 (2) Se(19) - Fe(7) - Se(13) 106.7 (2) mean 108 (2) Se(19) - Fe(7) - Se(13) 106.2 (3) mean 107.1 (9) Fe(2) - Se(3) - Fe(1) 71.3 (2) Fe(3) - Se(12) - Fe(6) 71.0 (2) Fe(5) - Se(9) - Fe(4) 71.6 (2) Fe(9) - Se(12) - Fe(6) 71.0 (2) Fe(5) - Se(9) - Fe(4) 71.6 (2) Fe(9) - Se(12) - Fe(6) 71.0 (2) Fe(5) - Se(9) - Fe(4) 71.6 (2) Fe(9) - Se(18) - Fe(6') 70.9 (2) Fe(5) - Se(15) - Fe(7) 71.3 (2) mean 71.6 (5) Fe(3) - Se(4) - Fe(2) 75.0 (2) Fe(3) - Se(5) - Fe(2) 72.0 (2) Fe(6) - Se(10) - Fe(5) 73.4 (2) Fe(6) - Se(10) - Fe(5) 71.0 (2) Fe(6) - Se(10) - Fe(5) 73.4 (2) Fe(6) - Se(10) - Fe(8) 73.0 (2) mean 74.1 (7) mean 72.0 (8) In Fe ₄ (μ_2 -Se) ₃ (μ_4 -Se) Bridgehead Fe(10) - Se(1) - Fe(1) 74.9 (2) Fe(10) - Se(1) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 10.0 (2) Fe(10) - Se(1) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 10.0 (2) Fe(10) - Se(19) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 10.0 (2) Fe(10) - Se(19) - Fe(1) 70.2 (2) Fe(1) - Se(19) - Fe(1) 10.3 (2) Fe(10) - Se(19) - Fe(1) 70.6 (2) Fe(7) - Se(19) - Fe(1) 10.9.3 (2) Fe(10) - Se(19) - Fe(1) 70.6 (2) Fe(7) - Se(19) - Fe(1) 10.9.3 (2) Fe(10) - Se(19) - Fe(1) 70.6 (2) Fe(7) - Se(19) - Fe(1) 10.9.6 (3) mean 70.7 (5) mean 109.6 (3)	Se(12) - Fe(6) - Se(11)	113 3 (3)	Se(18) - Fe(9) - Se(12')	105.2(2)
Se(16) - Fe(9) - Se(12) 109.6 (3) Se(18) - Fe(9) - Se(12) 109.6 (3) Se(18) - Fe(9) - Se(16) 113.8 (3) In Fe ₄ (μ_2 -Se) ₃ (μ_4 -Se) Bridgehead Se(7) - Fe(10) - Se(1) 111.4 (3) Se(13) - Fe(10) - Se(7) 113.8 (3) mean 112 (2) (μ_4 -Se) - Fe(-(μ_2 -Se) In Fe ₄ (μ_2 -Se) ₃ (μ_4 -Se) Bridgehead Se(19) - Fe(1) - Se(1) 106.4 (2) Se(19) - Fe(1) - Se(2) 105.8 (2) Se(19) - Fe(4) - Se(7) 106.2 (3) Se(19) - Fe(1) - Se(3) 108.7 (2) Se(19) - Fe(4) - Se(7) 106.2 (3) Se(19) - Fe(4) - Se(8) 105.6 (2) mean 106.5 (3) Se(19) - Fe(4) - Se(8) 105.7 (2) Se(19) - Fe(10) - Se(11) 108.4 (2) Se(19) - Fe(7) - Se(14) 105.7 (2) Se(19) - Fe(7) - Se(11) 108.4 (2) Se(19) - Fe(7) - Se(14) 105.7 (2) Se(19) - Fe(7) - Se(1) 108.4 (2) Se(19) - Fe(7) - Se(15) 108.4 (2) Se(19) - Fe(7) - Se(13) 106.2 (3) mean 107.1 (9) Fe(2) - Se(2) - Fe(1) 71.3 (2) Fe(3) - Se(6) - Fe(3) 71.9 (2) Fe(3) - Se(4) - Fe(7) 71.3 (2) Fe(3) - Se(4) - Fe(7) 71.3 (2) mean 71.6 (5) Fe(3) - Se(4) - Fe(7) 71.3 (2) mean 71.6 (5) Fe(3) - Se(4) - Fe(7) 71.3 (2) Fe(3) - Se(4) - Fe(7) 71.3 (2) mean 71.6 (5) Fe(3) - Se(10) - Fe(5) 73.4 (2) Fe(6) - Se(10) - Fe(5) 71.0 (2) Fe(6) - Se(10) - Fe(5) 73.4 (2) Fe(6) - Se(10) - Fe(8) 73.0 (2) mean 71.6 (5) Fe(10) - Se(17) - Fe(8) 74.0 (2) Fe(9) - Se(16) - Fe(8) 73.0 (2) mean 75.6 (5) Fe(10) - Se(1) - Fe(1) 74.9 (2) Fe(10) - Se(1) - Fe(1) 70.2 (2) Fe(4) - Se(16) - Fe(8) 73.0 (2) mean 75.6 (5) Fe(10) - Se(1) - Fe(1) 70.2 (2) Fe(4) - Se(16) - Fe(1) 10.0 (2) Fe(10) - Se(1) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 10.0 (2) Fe(10) - Se(1) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 110.0 (2) Fe(10) - Se(19) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 10.3 (2) Fe(10) - Se(19) - Fe(1) 70.6 (2) Fe(7) - Se(19) - Fe(1) 10.9.3 (2) Fe(10) - Se(19) - Fe(1) 70.6 (2) Fe(7) - Se(19) - Fe(1) 10.9.3 (2) Fe(10) - Se(19) - Fe(1) 70.6 (2) Fe(7) - Se(19) - Fe(1) 10.9.6 (3) mean 70.7 (5) mean 109.6 (3)	Se(18') - Fe(6) - Se(11)	107.9 (3)	56(10) 10(7) 56(12)	10012 (1)
$\begin{split} & \text{Se}(18)-\text{Fe}(9)-\text{Se}(16) & 113.8 (3) \\ & \text{In } \text{Fe}_4(\mu_2-\text{Se})_3(\mu_4-\text{Se}) \text{ Bridgehead} \\ & \text{Se}(7)-\text{Fe}(10)-\text{Se}(1) & 111.4 (3) \\ & \text{Se}(13)-\text{Fe}(10)-\text{Se}(1) & 111.4 (3) \\ & \text{Se}(13)-\text{Fe}(10)-\text{Se}(1) & 111.4 (3) \\ & \text{Se}(13)-\text{Fe}(1)-\text{Se}(1) & 113.8 (3) \\ & \text{mean} & 112 (2) \\ & (\mu_4-\text{Se})-\text{Fe}(-(\mu_2-\text{Se}) \\ & \text{In } \text{Fe}_4(\mu_2-\text{Se})_3(\mu_4-\text{Se}) \text{ Bridgehead} \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(1) & 106.4 (2) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(2) & 105.8 (2) \\ & \text{Se}(19)-\text{Fe}(4)-\text{Se}(7) & 106.2 (3) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 108.7 (2) \\ & \text{Se}(19)-\text{Fe}(4)-\text{Se}(7) & 106.2 (3) & \text{Se}(19)-\text{Fe}(1)-\text{Se}(3) & 108.7 (2) \\ & \text{Se}(19)-\text{Fe}(10)-\text{Se}(1) & 108.4 (2) & \text{Se}(19)-\text{Fe}(7)-\text{Se}(14) & 105.7 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(7) & 106.7 (2) & \text{mean} & 108 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(7) & 106.7 (2) & \text{mean} & 108 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(7) & 106.7 (2) & \text{mean} & 108 (2) \\ & \text{Se}(19)-\text{Fe}(1)-\text{Se}(13) & 106.2 (3) \\ & \text{mean} & 107.1 (9) \\ & \text{Fe}(-(\mu_2-\text{Se})-\text{Fe} \\ & \text{In } \text{Fe}_6(\mu_2-\text{Se})_{10} \text{ Chain} \\ & \text{Fe}(2)-\text{Se}(2)-\text{Fe}(1) & 71.3 (2) & \text{Fe}(3)-\text{Se}(5)-\text{Fe}(3) & 71.9 (2) \\ & \text{Fe}(5)-\text{Se}(8)-\text{Fe}(4) & 71.6 (2) & \text{Fe}(9)-\text{Se}(12)-\text{Fe}(6) & 71.0 (2) \\ & \text{Fe}(3)-\text{Se}(15)-\text{Fe}(7) & 71.3 (2) \\ & \text{mean} & 71.6 (5) \\ & \text{Fe}(3)-\text{Se}(4)-\text{Fe}(2) & 75.0 (2) & \text{Fe}(3)-\text{Se}(5)-\text{Fe}(2) & 72.0 (2) \\ & \text{Fe}(3)-\text{Se}(4)-\text{Fe}(2) & 75.0 (2) & \text{Fe}(3)-\text{Se}(5)-\text{Fe}(2) & 72.0 (2) \\ & \text{Fe}(3)-\text{Se}(4)-\text{Fe}(2) & 75.0 (2) & \text{Fe}(3)-\text{Se}(5)-\text{Fe}(2) & 72.0 (2) \\ & \text{Fe}(3)-\text{Se}(4)-\text{Fe}(2) & 74.0 (2) & \text{Fe}(9)-\text{Se}(1)-\text{Fe}(5) & 71.0 (2) \\ & \text{Fe}(3)-\text{Se}(1)-\text{Fe}(1) & 74.9 (2) \\ & \text{Fe}(10)-\text{Se}(1)-\text{Fe}(1) & 74.9 (2) \\ & \text{Fe}(10)-\text{Se}(1)$	Se(16) - Fe(9) - Se(12')	109.6 (3)		
$In Fe_4(\mu_2 Se)_3(\mu_4 - Se) Bridgehead$ $Se(7) - Fe(10) - Se(1) 109.2 (3)$ $Se(13) - Fe(10) - Se(1) 111.4 (3)$ $Se(13) - Fe(1) - Se(7) 113.8 (3)$ mean 112 (2) $(\mu_4 - Se) - Fe - (\mu_2 - Se)$ $In Fe_4(\mu_2 - Se)_3(\mu_4 - Se) Bridgehead$ $Se(19) - Fe(1) - Se(1) 106.4 (2) Se(19) - Fe(1) - Se(2) 105.8 (2)$ $Se(19) - Fe(4) - Se(7) 106.2 (3) Se(19) - Fe(1) - Se(3) 108.7 (2)$ $Se(19) - Fe(1) - Se(13) 107.0 (2) Se(19) - Fe(4) - Se(8) 105.6 (2)$ mean 106.5 (3) Se(19) - Fe(4) - Se(8) 105.7 (2) $Se(19) - Fe(10) - Se(1) 108.4 (2) Se(19) - Fe(7) - Se(14) 105.7 (2)$ $Se(19) - Fe(10) - Se(7) 106.7 (2) mean 108 (2)$ $Se(19) - Fe(7) - Se(13) 106.2 (3)$ mean 107.1 (9) $Fe(2) - Se(2) - Fe(1) 71.3 (2) Fe(3) - Se(6) - Fe(3') 71.9 (2)$ $Fe(3) - Se(1) - Fe(7) 71.3 (2)$ $Fe(3) - Se(1) - Fe(7) 71.3 (2)$ $mean 71.6 (5)$ $Fe(3) - Se(13) - Fe(7) 71.3 (2)$ mean 71.6 (5) $Fe(3) - Se(13) - Fe(7) 71.3 (2)$ mean 71.6 (5) $Fe(3) - Se(13) - Fe(7) 71.3 (2)$ $mean 71.6 (5)$ $Fe(3) - Se(17) - Fe(8) 74.0 (2) Fe(3) - Se(5) - Fe(2) 72.0 (2)$ $Fe(6) - Se(10) - Fe(5) 73.4 (2) Fe(6) - Se(11) - Fe(5) 71.0 (2)$ $Fe(10) - Se(17) - Fe(8) 74.0 (2) Fe(9) - Se(16) - Fe(8) 73.0 (2)$ mean 71.6 (5) $Fe(10) - Se(17) - Fe(1) 74.9 (2)$ $Fe(10) - Se(17) - Fe(1) 74.9 (2)$ $Fe(10) - Se(13) - Fe(7) 76.1 (2)$ mean 75.6 (5) $Fe(10) - Se(13) - Fe(7) 76.1 (2)$ mean 75.6 (5) $Fe(10) - Se(19) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 110.0 (2)$ $Fe(10) - Se(19) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 109.3 (2)$ $Te(10) - Se(19) - Fe(1) 70.2 (2) Fe(4) - Se(19) - Fe(1) 109.3 (2)$ $Te(10) - Se(19) - Fe(1) 70.6 (2) Fe(7) - Se(19) - Fe(4) 109.6 (2)$ mean 70.7 (5) mean 109.6 (3)	Se(18) - Fe(9) - Se(16)	113.8 (3)		
$\begin{aligned} & \operatorname{Fe}_{4,\mu_2-Se}(\mu_2-Se) \operatorname{Bridgenead} \\ & \operatorname{Se}(7)-\operatorname{Fe}(10)-\operatorname{Se}(1) & 111.4 & (3) \\ & \operatorname{Se}(13)-\operatorname{Fe}(10)-\operatorname{Se}(7) & 113.8 & (3) \\ & \operatorname{mean} & 112 & (2) \\ & & & (\mu_4-Se)-\operatorname{Fe}_{-}(\mu_2-Se) \\ & \operatorname{In} \operatorname{Fe}_4(\mu_2-Se)_3(\mu_4-Se) \operatorname{Bridgehead} \\ & \operatorname{Se}(19)-\operatorname{Fe}(1)-\operatorname{Se}(1) & 106.4 & (2) & \operatorname{Se}(19)-\operatorname{Fe}(1)-\operatorname{Se}(2) & 105.8 & (2) \\ & \operatorname{Se}(19)-\operatorname{Fe}(4)-\operatorname{Se}(7) & 106.2 & (3) & \operatorname{Se}(19)-\operatorname{Fe}(1)-\operatorname{Se}(3) & 108.7 & (2) \\ & \operatorname{Se}(19)-\operatorname{Fe}(10)-\operatorname{Se}(1) & 106.4 & (2) & \operatorname{Se}(19)-\operatorname{Fe}(4)-\operatorname{Se}(8) & 105.6 & (2) \\ & \operatorname{mean} & 106.5 & (3) & \operatorname{Se}(19)-\operatorname{Fe}(4)-\operatorname{Se}(8) & 105.6 & (2) \\ & \operatorname{mean} & 106.5 & (3) & \operatorname{Se}(19)-\operatorname{Fe}(7)-\operatorname{Se}(14) & 105.7 & (2) \\ & \operatorname{Se}(19)-\operatorname{Fe}(10)-\operatorname{Se}(1) & 108.4 & (2) & \operatorname{Se}(19)-\operatorname{Fe}(7)-\operatorname{Se}(14) & 105.7 & (2) \\ & \operatorname{Se}(19)-\operatorname{Fe}(10)-\operatorname{Se}(1) & 106.2 & (3) \\ & \operatorname{mean} & 107.1 & (9) \\ & \operatorname{Fe}_{-}(\mu_2-\operatorname{Se})-\operatorname{Fe} \\ & \operatorname{In} \operatorname{Fe}_6(\mu_2-\operatorname{Se})-\operatorname{Fe} \\ & \operatorname{In} \operatorname{Fe}_6(\mu_2-\operatorname{Se})-\operatorname{Fe} \\ & \operatorname{In} \operatorname{Fe}_6(\mu_2-\operatorname{Se})-\operatorname{Fe}(1) \\ & \operatorname{Fe}(3)-\operatorname{Se}(1) -\operatorname{Fe}(7) & 71.3 & (2) \\ & \operatorname{Fe}(3)-\operatorname{Se}(1)-\operatorname{Fe}(7) & 71.3 & (2) \\ & \operatorname{Fe}(3)-\operatorname{Se}(15)-\operatorname{Fe}(7) & 71.3 & (2) \\ & \operatorname{mean} & 71.6 & (5) \\ & \operatorname{Fe}(3)-\operatorname{Se}(1)-\operatorname{Fe}(7) & 71.3 & (2) \\ & \operatorname{mean} & 71.6 & (5) \\ & \operatorname{Fe}(3)-\operatorname{Se}(1)-\operatorname{Fe}(7) & 71.3 & (2) \\ & \operatorname{mean} & 71.6 & (5) \\ & \operatorname{Fe}(3)-\operatorname{Se}(1)-\operatorname{Fe}(5) & 73.4 & (2) & \operatorname{Fe}(3)-\operatorname{Se}(5)-\operatorname{Fe}(2) & 72.0 & (2) \\ & \operatorname{Fe}(3)-\operatorname{Se}(1)-\operatorname{Fe}(7) & 74.9 & (2) \\ & \operatorname{Fe}(10)-\operatorname{Se}(1)-\operatorname{Fe}(5) & 74.0 & (2) & \operatorname{Fe}(9)-\operatorname{Se}(1)-\operatorname{Fe}(8) & 73.0 & (2) \\ & \operatorname{mean} & 74.1 & (7) \\ & \operatorname{mean} & 74.0 & (2) & \operatorname{Fe}(9)-\operatorname{Se}(1)-\operatorname{Fe}(8) & 73.0 & (2) \\ & \operatorname{Fe}(10)-\operatorname{Se}(7)-\operatorname{Fe}(4) & 75.9 & (2) \\ & \operatorname{Fe}(10)-\operatorname{Se}(1)-\operatorname{Fe}(7) & 76.1 & (2) \\ & \operatorname{mean} & 75.6 & (5) \\ \\ & \operatorname{mean} & 75.6 & (5) \\ & \operatorname{mean} & 75.6 & (5) \\ & \operatorname{Fe}(10)-\operatorname{Se}(19)-\operatorname{Fe}(1) & 70.2 & (2) & \operatorname{Fe}(4)-\operatorname{Se}(19)-\operatorname{Fe}(1) & 100.0 & (2) \\ & \operatorname{Fe}(10)-\operatorname{Se}(19)-\operatorname{Fe}(1) & 70.2 & (2) & \operatorname{Fe}(4)-\operatorname{Se}(19)-\operatorname{Fe}(1) & 109.3 & (2) \\ & \operatorname{mean} & 70.7 & (5) & \operatorname{mean} & 109.6 & (3) \\ \end{array}\right)$		(Sa) Deidaahaad	
$\begin{array}{c} \operatorname{Se}(1)^{-re(10)-se(1)} & 109.2 \ (3) \\ \operatorname{Se}(13)^{-Fe(10)-Se(1)} & 111.4 \ (3) \\ \operatorname{Se}(13)^{-Fe(10)-Se(7)} & 113.8 \ (3) \\ \operatorname{mean} & 112 \ (2) \\ & (\mu_4 \cdot \operatorname{Se})^{-Fe-}(\mu_2 \cdot \operatorname{Se}) \\ \operatorname{In} \ \operatorname{Fe}_4(\mu_2 \cdot \operatorname{Se})_3(\mu_4 \cdot \operatorname{Se}) \ \operatorname{Bridgehead} \\ \operatorname{Se}(19)^{-Fe(1)^{-}Se(1)} & 106.4 \ (2) \ \operatorname{Se}(19)^{-Fe(1)^{-}Se(2)} & 105.8 \ (2) \\ \operatorname{Se}(19)^{-Fe(4)^{-}Se(7)} & 106.2 \ (3) \ \operatorname{Se}(19)^{-Fe(4)^{-}Se(8)} & 105.6 \ (2) \\ \operatorname{mean} & 106.5 \ (3) \ \operatorname{Se}(19)^{-Fe(4)^{-}Se(8)} & 105.6 \ (2) \\ \operatorname{mean} & 106.5 \ (3) \ \operatorname{Se}(19)^{-Fe(4)^{-}Se(8)} & 105.6 \ (2) \\ \operatorname{mean} & 106.5 \ (3) \ \operatorname{Se}(19)^{-Fe(4)^{-}Se(8)} & 105.6 \ (2) \\ \operatorname{Se}(19)^{-Fe(10)^{-}Se(1)} & 108.4 \ (2) \ \operatorname{Se}(19)^{-Fe(4)^{-}Se(8)} & 108.4 \ (2) \\ \operatorname{Se}(19)^{-Fe(10)^{-}Se(1)} & 106.2 \ (3) \\ \operatorname{mean} & 107.1 \ (9) \\ \end{array}$ $\begin{array}{c} \operatorname{Fe}-(\mu_2 \cdot \operatorname{Se})^{-Fe} \\ \operatorname{In} \ \operatorname{Fe}_6(\mu_2 \cdot \operatorname{Se})_{10} \ \operatorname{Chain} \\ \operatorname{Fe}(2)^{-Se(2)^{-}Fe(1)} & 71.3 \ (2) \ \operatorname{Fe}(3)^{-}Se(6)^{-}Fe(3)^{-} \ 71.9 \ (2) \\ \operatorname{Fe}(5)^{-}Se(8)^{-}Fe(4) & 71.6 \ (2) \ \operatorname{Fe}(9)^{-}Se(18)^{-}Fe(6)^{-} \ 70.9 \ (2) \\ \operatorname{Fe}(5)^{-}Se(8)^{-}Fe(4) & 71.6 \ (2) \ \operatorname{Fe}(9)^{-}Se(18)^{-}Fe(6)^{-} \ 70.9 \ (2) \\ \operatorname{Fe}(8)^{-}Se(14)^{-}Fe(7) & 71.3 \ (2) \ \operatorname{mean} & 71.3 \ (4) \\ \operatorname{Fe}(8)^{-}Se(10)^{-}Fe(7) & 71.3 \ (2) \ \operatorname{mean} & 71.6 \ (5) \\ \operatorname{Fe}(3)^{-}Se(4)^{-}Fe(2) & 75.0 \ (2) \ \operatorname{Fe}(3)^{-}Se(5)^{-}Fe(2) & 72.0 \ (2) \\ \operatorname{Fe}(3)^{-}Se(4)^{-}Fe(2) & 75.0 \ (2) \ \operatorname{Fe}(3)^{-}Se(5)^{-}Fe(2) & 72.0 \ (2) \\ \operatorname{Fe}(3)^{-}Se(1)^{-}Fe(5) & 73.4 \ (2) \ \operatorname{Fe}(6)^{-}Se(1)^{-}Fe(5) & 71.0 \ (2) \\ \operatorname{Fe}(9)^{-}Se(1)^{-}Fe(5) & 74.4 \ (2) \ \operatorname{Fe}(9)^{-}Se(16)^{-}Fe(8) & 73.0 \ (2) \\ \operatorname{mean} & 74.1 \ (7) \ \operatorname{mean} & 72.0 \ (8) \\ \ \operatorname{In} \ \operatorname{Fe}_4(\mu_2 \cdot \operatorname{Se})(\mu_4 \cdot \operatorname{Se}) \ \operatorname{Bridgehead} \\ \operatorname{Fe}(10)^{-}Se(13)^{-}Fe(7) & 76.1 \ (2) \\ \operatorname{mean} & 75.6 \ (5) \\ \end{tabulk} = \\ \operatorname{Fe}(10)^{-}Se(19)^{-}Fe(1) & 70.2 \ (2) \ \operatorname{Fe}(4)^{-}Se(1)^{-}Fe(1) & 110.0 \ (2) \\ \operatorname{Fe}(10)^{-}Se(19)^{-}Fe(4) & 71.3 \ (2) \ \operatorname{Fe}(7)^{-}Se(19)^{-}Fe(1) & 109.3 \ (2) \\ \operatorname{mean} & 75.6 \ (5) \\ \end{tabulk} = \\ \operatorname{Fe}(10)^{-}Se(19)^{-}Fe(4)$	$E_{-}(7) = E_{-}(10) = E_{-}(1)$	$(\mu_2 - 3e)_3(\mu_4)$	-Se) Bridgeneau	
Set13)-Fet10)-Set11 111.4 (3) Set13)-Fet10)-Set11 111.4 (3) mean 112 (2) $(\mu_4-Se)-Fe-(\mu_2-Se)$ In Fe ₄ (μ_2-Se) ₃ (μ_4-Se) Bridgehead Set19)-Fet(1)-Set11 106.4 (2) Set19)-Fet(1)-Set(2) 105.8 (2) Set19)-Fet(4)-Set(7) 106.2 (3) Set19)-Fet(1)-Set(3) 108.7 (2) Set19)-Fet(10)-Set13) 107.0 (2) Set19)-Fet(4)-Set(8) 105.6 (2) mean 106.5 (3) Set19)-Fet(4)-Set(8) 105.6 (2) mean 106.5 (3) Set19)-Fet(7)-Set14) 105.7 (2) Set19)-Fet(10)-Set(1) 108.4 (2) Set19)-Fet(7)-Set14) 105.7 (2) Set19)-Fet(10)-Set(7) 106.7 (2) mean 108 (2) Set19)-Fet(7)-Set13) 106.2 (3) mean 107.1 (9) Fet(2)-Set(2)-Fet(1) 71.3 (2) Fet(3)-Set(6)-Fet(3') 71.9 (2) Fet(2)-Set(3)-Fet(1) 71.6 (2) Fet(9)-Set12)-Fet(6') 70.9 (2) Fet(5)-Set(3)-Fet(1) 71.6 (2) Fet(9)-Set(12)-Fet(6') 70.9 (2) Fet(3)-Set(4)-Fet(7) 71.3 (2) mean 71.6 (5) Fet(3)-Set(4)-Fet(7) 75.0 (2) Fet(3)-Set(5)-Fet(2) 72.0 (2) Fet(6)-Set(10)-Fet(5) 73.4 (2) Fet(6)-Set(11)-Fet(5) 71.0 (2) Fet(9)-Set(1)-Fet(8) 74.0 (2) Fet(9)-Set(16)-Fet(8) 73.0 (2) mean 74.1 (7) mean 72.0 (8) In Fet ₄ (μ_2 -Se) ₃ (μ_4 -Se) Bridgehead Fet(10)-Set(1)-Fet(1) 70.2 (2) Fet(4)-Set(9)-Fet(1) 110.0 (2) Fet(1)-Set(1)-Fet(1) 70.2 (2) Fet(4)-Set(9)-Fet(1) 110.0 (2) Fet(1)-Set(1)-Fet(4) 71.3 (2) Fet(7)-Set(1)-Fet(1) 10.9 (2) Fet(1)-Set(1)-Fet(4) 71.3 (2) Fet(7)-Set(1)-Fet(1) 10.9 (2) Fet(1)-Set(1)-Fet(4) 71.3 (2) Fet(7)-Set(1)-Fet(1) 10.9 (2) Fet(1)-Set(1)-Fet(4) 75.9 (2) Fet(1)-Set(1)-Fet(4) 75.9 (2) Fet(1)-Set(1)-Fet(4) 75.9 (2) Fet(1)-Set(1)-Fet(4) 71.3 (2) Fet(7)-Set(1)-Fet(1) 10.0 (2) Fet(1)-Set(1)-Fet(4) 71.3 (2) Fet(7)-Set(1)-Fet(1) 10.9 (2) Fet(1)-Set(1)-Fe	Se(1) = Fe(10) = Se(1)	109.2(3)		
$\begin{array}{c} {\rm Se}(13)-{\rm Fe}(10)-{\rm Se}(7) & 113.8 \ (3) \\ {\rm mean} & 112 \ (2) \\ & (\mu_4-{\rm Se})-{\rm Fe}(-(\mu_2-{\rm Se}) \\ {\rm In} \ {\rm Fe}_4(\mu_2-{\rm Se})_3(\mu_4-{\rm Se}) \ {\rm Bridgehead} \\ {\rm Se}(19)-{\rm Fe}(1)-{\rm Se}(1) & 106.4 \ (2) \ {\rm Se}(19)-{\rm Fe}(1)-{\rm Se}(2) & 105.8 \ (2) \\ {\rm Se}(19)-{\rm Fe}(4)-{\rm Se}(7) & 106.2 \ (3) \ {\rm Se}(19)-{\rm Fe}(1)-{\rm Se}(3) & 108.7 \ (2) \\ {\rm Se}(19)-{\rm Fe}(10)-{\rm Se}(1) & 106.4 \ (2) \ {\rm Se}(19)-{\rm Fe}(4)-{\rm Se}(8) & 105.6 \ (2) \\ {\rm mean} & 106.5 \ (3) \ {\rm Se}(19)-{\rm Fe}(4)-{\rm Se}(9) & 111.2 \ (3) \\ {\rm Se}(19)-{\rm Fe}(10)-{\rm Se}(1) & 108.4 \ (2) \ {\rm Se}(19)-{\rm Fe}(7)-{\rm Se}(14) & 105.7 \ (2) \\ {\rm Se}(19)-{\rm Fe}(10)-{\rm Se}(7) & 106.7 \ (2) \ {\rm mean} & 108 \ (2) \\ {\rm Se}(19)-{\rm Fe}(7)-{\rm Se}(13) & 106.2 \ (3) \\ {\rm mean} & 107.1 \ (9) \\ \hline {\rm Fe}(2)-{\rm Se}(2)-{\rm Fe}(1) & 71.6 \ (2) \ {\rm Fe}(3)-{\rm Se}(6)-{\rm Fe}(3') & 71.9 \ (2) \\ {\rm Fe}(2)-{\rm Se}(3)-{\rm Fe}(1) & 71.6 \ (2) \ {\rm Fe}(9)-{\rm Se}(12)-{\rm Fe}(6) & 71.0 \ (2) \\ {\rm Fe}(3)-{\rm Se}(3)-{\rm Fe}(4) & 71.6 \ (2) \ {\rm Fe}(9)-{\rm Se}(12)-{\rm Fe}(6) & 70.9 \ (2) \\ {\rm Fe}(3)-{\rm Se}(4)-{\rm Fe}(2) & 75.0 \ (2) \ {\rm Fe}(3)-{\rm Se}(5)-{\rm Fe}(2) & 72.0 \ (2) \\ {\rm Fe}(3)-{\rm Se}(1)-{\rm Fe}(5) & 73.4 \ (2) \ {\rm Fe}(9)-{\rm Se}(1)-{\rm Fe}(5) & 71.0 \ (2) \\ {\rm Fe}(3)-{\rm Se}(1)-{\rm Fe}(5) & 73.4 \ (2) \ {\rm Fe}(9)-{\rm Se}(1)-{\rm Fe}(5) & 71.0 \ (2) \\ {\rm Fe}(3)-{\rm Se}(1)-{\rm Fe}(5) & 73.4 \ (2) \ {\rm Fe}(9)-{\rm Se}(1)-{\rm Fe}(5) & 71.0 \ (2) \\ {\rm Fe}(1)-{\rm Se}(1)-{\rm Fe}(1) & 74.9 \ (2) \\ {\rm Fe}(1)-{\rm Se}(1)-{\rm Fe}(4) & 75.9 \ (2) \\ {\rm Fe}(1)-{\rm Se}(1)-{\rm Fe}(4) & 75.9 \ (2) \\ {\rm Fe}(1)-{\rm Se}(1)-{\rm Fe}(4) & 75.9 \ (2) \\ {\rm Fe}(1)-{\rm Se}(1)-{\rm Fe}(1) & 70.2 \ (2) \ {\rm Fe}(3)-{\rm Se}(1)-{\rm Fe}(1) & 110.0 \ (2) \\ {\rm Fe}(1)-{\rm Se}(19)-{\rm Fe}(1) & 70.2 \ (2) \ {\rm Fe}(2)-{\rm Se}(1)-{\rm Fe}(1) & 100.3 \ (2) \\ {\rm mean} & 75.6 \ (5) \\ \hline {\rm mean} & 75.6 \ (5) \\ \hline {\rm mean} & 75.6 \ (5) \\ {\rm mean} & 75.6 \ (5) \\ \ {\rm mean} & 75.6 \ (5) \ {\rm mean} & 75.6 \ (5) \\ \ {\rm mean} & 75.6 \ (5) \ {\rm mean} & 75.6 \ (5$	Se(13) - Fe(10) - Se(1)	111.4(3)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Se(13) - Fe(10) - Se(7)	113.8 (3)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mean	112 (2)		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		(µ₄-Se)−F	$e^{-(\mu_2-Se)}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	In Fe.	(u-Se) (u	-Se) Bridgehead	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Se(19) - Fe(1) - Se(1)	1064(2)	Se(19)-Fe(1)-Se(2)	105 8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Se(19) - Fe(4) - Se(7)	106.2(3)	Se(19) - Fe(1) - Se(3)	108.7(2)
$\begin{array}{c} \mbox{mean} & 106.5 (3) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Se(19) - Fe(10) - Se(13)	107.0(2)	Se(19) - Fe(4) - Se(8)	105.6(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mean	106.5 (3)	Se(19) - Fe(4) - Se(9)	1112(3)
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$		100.0 (5)	Se(19) - Fe(7) - Se(14)	105.7(2)
$\begin{array}{c} \operatorname{Se}(19) - \operatorname{Fe}(10) - \operatorname{Se}(17) & 106.7 & (2) & \operatorname{mean} & 108.7 & (2) \\ \operatorname{Se}(19) - \operatorname{Fe}(10) - \operatorname{Se}(13) & 106.7 & (2) & \operatorname{mean} & 108 & (2) \\ \end{array}$ $\begin{array}{c} \operatorname{Fe}(10) - \operatorname{Se}(13) & 106.7 & (2) & \operatorname{mean} & 108 & (2) \\ \operatorname{se}(19) - \operatorname{Fe}(1) - \operatorname{Se}(13) & 106.2 & (3) \\ \operatorname{mean} & 107.1 & (9) \\ \end{array}$ $\begin{array}{c} \operatorname{Fe}(-(\mu_2 - \operatorname{Se}) - \operatorname{Fe} & \\ \operatorname{In} & \operatorname{Fe}_6((\mu_2 - \operatorname{Se}) - \operatorname{Se}(6) - \operatorname{Fe}(3') & 71.9 & (2) \\ \operatorname{Fe}(2) - \operatorname{Se}(3) - \operatorname{Fe}(1) & 71.6 & (2) & \operatorname{Fe}(9) - \operatorname{Se}(12) - \operatorname{Fe}(6) & 71.0 & (2) \\ \operatorname{Fe}(5) - \operatorname{Se}(3) - \operatorname{Fe}(1) & 71.6 & (2) & \operatorname{Fe}(9) - \operatorname{Se}(12) - \operatorname{Fe}(6) & 70.9 & (2) \\ \operatorname{Fe}(5) - \operatorname{Se}(3) - \operatorname{Fe}(4) & 71.6 & (2) & \operatorname{mean} & 71.3 & (4) \\ \operatorname{Fe}(8) - \operatorname{Se}(14) - \operatorname{Fe}(7) & 71.3 & (2) \\ \operatorname{mean} & 71.6 & (5) \\ \operatorname{Fe}(3) - \operatorname{Se}(4) - \operatorname{Fe}(7) & 71.3 & (2) \\ \operatorname{mean} & 71.6 & (5) \\ \operatorname{Fe}(3) - \operatorname{Se}(4) - \operatorname{Fe}(2) & 75.0 & (2) & \operatorname{Fe}(3) - \operatorname{Se}(5) - \operatorname{Fe}(2) & 72.0 & (2) \\ \operatorname{Fe}(6) - \operatorname{Se}(10) - \operatorname{Fe}(5) & 73.4 & (2) & \operatorname{Fe}(6) - \operatorname{Se}(11) - \operatorname{Fe}(5) & 71.0 & (2) \\ \operatorname{Fe}(9) - \operatorname{Se}(17) - \operatorname{Fe}(8) & 74.0 & (2) & \operatorname{Fe}(9) - \operatorname{Se}(16) - \operatorname{Fe}(8) & 73.0 & (2) \\ \operatorname{mean} & 74.1 & (7) & \operatorname{mean} & 72.0 & (8) \\ \\ \operatorname{Fe}(10) - \operatorname{Se}(1) - \operatorname{Fe}(7) & 76.1 & (2) \\ \operatorname{mean} & 75.6 & (5) \\ \end{array}$ $\begin{array}{c} \operatorname{Fe}(10) - \operatorname{Se}(13) - \operatorname{Fe}(7) & 76.1 & (2) \\ \operatorname{mean} & 75.6 & (5) \\ \\ \operatorname{Fe}(10) - \operatorname{Se}(19) - \operatorname{Fe}(1) & 70.2 & (2) & \operatorname{Fe}(4) - \operatorname{Se}(19) - \operatorname{Fe}(1) & 110.0 & (2) \\ \operatorname{Fe}(10) - \operatorname{Se}(19) - \operatorname{Fe}(4) & 71.3 & (2) & \operatorname{Fe}(7) - \operatorname{Se}(19) - \operatorname{Fe}(1) & 109.3 & (2) \\ \operatorname{Fe}(10) - \operatorname{Se}(19) - \operatorname{Fe}(4) & 71.3 & (2) & \operatorname{Fe}(7) - \operatorname{Se}(19) - \operatorname{Fe}(4) & 109.6 & (3) \\ \end{array}$	Se(19) - Fe(10) - Se(1)	1084(2)	Se(19) - Fe(7) - Se(15)	108.4(2)
$\begin{array}{c} \operatorname{Fet}(1) -\operatorname{Fet}(2) -\operatorname{Fet}(3) & \operatorname{IOS}(2) & \operatorname{Fet}(2) - \operatorname{Se}(1) - \operatorname{Fet}(1) & 71.3 & (2) & \operatorname{Fet}(3) - \operatorname{Se}(3) - \operatorname{Fet}(1) & 71.6 & (2) & \operatorname{Fet}(3) - \operatorname{Se}(6) - \operatorname{Fet}(3) & 71.9 & (2) & \operatorname{Fet}(3) - \operatorname{Se}(3) - \operatorname{Fet}(4) & 71.6 & (2) & \operatorname{Fet}(3) - \operatorname{Se}(4) - \operatorname{Fet}(4) & 71.6 & (2) & \operatorname{Fet}(3) - \operatorname{Se}(3) - \operatorname{Fet}(4) & 71.3 & (2) & \operatorname{IOS}(2) & \operatorname{Fet}(3) - \operatorname{Se}(4) - \operatorname{Fet}(7) & 71.3 & (2) & \operatorname{IOS}(2) & \operatorname{Fet}(3) - \operatorname{Se}(4) - \operatorname{Fet}(7) & 71.3 & (2) & \operatorname{IOS}(4) - \operatorname{Fet}(7) & 71.3 & (2) & \operatorname{IOS}(4) - \operatorname{Fet}(2) & 75.0 & (2) & \operatorname{Fet}(3) - \operatorname{Se}(5) - \operatorname{Fet}(2) & 72.0 & (2) & \operatorname{Fet}(3) - \operatorname{Se}(4) - \operatorname{Fet}(2) & 73.4 & (2) & \operatorname{Fet}(6) - \operatorname{Se}(1) - \operatorname{Fet}(5) & 71.0 & (2) & \operatorname{Fet}(9) - \operatorname{Se}(1) - \operatorname{Fet}(5) & 73.4 & (2) & \operatorname{Fet}(6) - \operatorname{Se}(1) - \operatorname{Fet}(5) & 73.4 & (2) & \operatorname{Fet}(6) - \operatorname{Se}(1) - \operatorname{Fet}(5) & 73.4 & (2) & \operatorname{Fet}(6) - \operatorname{Se}(1) - \operatorname{Fet}(5) & 73.4 & (2) & \operatorname{Fet}(6) - \operatorname{Se}(1) - \operatorname{Fet}(3) & 74.1 & (7) & \operatorname{mean} & 72.0 & (8) & \operatorname{IOS}(2) & \operatorname{IOS}(4) & \operatorname{IOS}(2) & \operatorname{Fet}(1) - \operatorname{Se}(1) - \operatorname{Fet}(1) & 74.9 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(4) & 75.9 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(4) & 75.9 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(4) & 75.9 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(4) & 75.9 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(1) & 74.9 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(1) & 74.9 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(1) & 75.6 & (5) & \operatorname{IOS}(4) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(4) & 71.3 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(1) & 10.0 & (2) & \operatorname{Fet}(4) - \operatorname{Se}(1) - \operatorname{Fet}(4) & 71.3 & (2) & \operatorname{Fet}(3) - \operatorname{Fet}(1) & 109.3 & (2) & \operatorname{Fet}(3) - \operatorname{Fet}(4) & 71.3 & (2) & \operatorname{Fet}(3) - \operatorname{Fet}(4) & 109.6 & (2) & \operatorname{IOS}(4) & \operatorname{IOS}(6) & \operatorname{IOS}(4) & \operatorname{IOS}($	Se(19) - Fe(10) - Se(7)	106.7(2)	mean	108(2)
$\begin{array}{c} \operatorname{Fe}(1) \operatorname{Fe}(1) \operatorname{Fe}(1) \operatorname{Fe}(1) \\ \operatorname{Fe}(1) \operatorname{Fe}(1) \operatorname{Fe}(1) \\ \operatorname{Fe}(1) \operatorname{Fe}(1) \\ \operatorname{Fe}$	Se(19) - Fe(7) - Se(13)	106.7(2)	mean	100 (2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mean	107.1(9)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	moan	107.1 (2)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$Fe-(\mu_2-$	Se)–Fe	
$\begin{array}{cccccccc} Fe(2)-Se(2)-Fe(1) & 71.3 & (2) & Fe(3)-Se(6)-Fe(3') & 71.9 & (2) \\ Fe(2)-Se(3)-Fe(1) & 71.6 & (2) & Fe(9')-Se(12)-Fe(6) & 71.0 & (2) \\ Fe(5)-Se(8)-Fe(4) & 71.6 & (2) & Fe(9)-Se(18)-Fe(6') & 70.9 & (2) \\ Fe(5)-Se(9)-Fe(4) & 72.6 & (2) & mean & 71.3 & (4) \\ Fe(8)-Se(14)-Fe(7) & 71.3 & (2) \\ Fe(8)-Se(15)-Fe(7) & 71.3 & (2) \\ mean & 71.6 & (5) \\ Fe(3)-Se(4)-Fe(2) & 75.0 & (2) & Fe(3)-Se(5)-Fe(2) & 72.0 & (2) \\ Fe(6)-Se(10)-Fe(5) & 73.4 & (2) & Fe(6)-Se(11)-Fe(5) & 71.0 & (2) \\ Fe(6)-Se(10)-Fe(5) & 73.4 & (2) & Fe(6)-Se(11)-Fe(5) & 71.0 & (2) \\ Fe(6)-Se(10)-Fe(8) & 74.0 & (2) & Fe(9)-Se(16)-Fe(8) & 73.0 & (2) \\ mean & 74.1 & (7) & mean & 72.0 & (8) \\ mean & 74.1 & (7) & mean & 72.0 & (8) \\ Fe(10)-Se(1)-Fe(1) & 74.9 & (2) \\ Fe(10)-Se(1)-Fe(4) & 75.9 & (2) \\ Fe(10)-Se(13)-Fe(7) & 76.1 & (2) \\ mean & 75.6 & (5) \\ \hline \end{array}$ $\begin{array}{c} Fe-(\mu_4-Se)-Fe \\ In & Fe_4(\mu_2-Se)_3(\mu_4-Se) & Bridgehead \\ Fe(10)-Se(19)-Fe(1) & 70.2 & (2) & Fe(4)-Se(19)-Fe(1) & 110.0 & (2) \\ Fe(10)-Se(19)-Fe(4) & 71.3 & (2) & Fe(7)-Se(19)-Fe(1) & 109.3 & (2) \\ Fe(10)-Se(19)-Fe(7) & 70.6 & (2) & Fe(7)-Se(19)-Fe(4) & 109.6 & (2) \\ mean & 70.7 & (5) & mean & 109.6 & (3) \\ \end{array}$]	In $Fe_6(\mu_2 - S)$	e) ₁₀ Chain	
$\begin{array}{cccccccc} Fe(2)-Se(3)-Fe(1) & 71.6 & (2) & Fe(9')-Se(12)-Fe(6) & 71.0 & (2) \\ Fe(5)-Se(8)-Fe(4) & 71.6 & (2) & Fe(9)-Se(18)-Fe(6') & 70.9 & (2) \\ Fe(5)-Se(9)-Fe(4) & 72.6 & (2) & mean & 71.3 & (4) \\ Fe(8)-Se(14)-Fe(7) & 71.3 & (2) \\ mean & 71.6 & (5) \\ Fe(3)-Se(4)-Fe(2) & 75.0 & (2) & Fe(3)-Se(5)-Fe(2) & 72.0 & (2) \\ Fe(6)-Se(10)-Fe(5) & 73.4 & (2) & Fe(6)-Se(11)-Fe(5) & 71.0 & (2) \\ Fe(9)-Se(17)-Fe(8) & 74.0 & (2) & Fe(9)-Se(16)-Fe(8) & 73.0 & (2) \\ mean & 74.1 & (7) & mean & 72.0 & (8) \\ mean & 74.1 & (7) & mean & 72.0 & (8) \\ Fe(10)-Se(1)-Fe(1) & 74.9 & (2) \\ Fe(10)-Se(1)-Fe(4) & 75.9 & (2) \\ Fe(10)-Se(13)-Fe(7) & 76.1 & (2) \\ mean & 75.6 & (5) \\ \hline \end{array}$	Fe(2)-Se(2)-Fe(1)	71.3 (2)	Fe(3)-Se(6)-Fe(3')	71.9 (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe(2)-Se(3)-Fe(1)	71.6 (2)	Fe(9')-Se(12)-Fe(6)	71.0 (2)
$\begin{array}{ccccccc} Fe(5)-Se(9)-Fe(4) & 72.6 & (2) & mean & 71.3 & (4) \\ Fe(8)-Se(14)-Fe(7) & 71.3 & (2) & & & & \\ mean & 71.6 & (5) & & & \\ Fe(3)-Se(4)-Fe(2) & 75.0 & (2) & Fe(3)-Se(5)-Fe(2) & 72.0 & (2) \\ Fe(6)-Se(10)-Fe(2) & 73.4 & (2) & Fe(6)-Se(11)-Fe(5) & 71.0 & (2) \\ Fe(9)-Se(17)-Fe(8) & 74.0 & (2) & Fe(9)-Se(16)-Fe(8) & 73.0 & (2) \\ mean & 74.1 & (7) & mean & 72.0 & (8) \\ & & & & & \\ Fe(10)-Se(1)-Fe(1) & 74.9 & (2) & & \\ Fe(10)-Se(1)-Fe(4) & 75.9 & (2) & & \\ Fe(10)-Se(13)-Fe(7) & 76.1 & (2) & & \\ mean & 75.6 & (5) & & \\ \hline & & & & \\ Fe(10)-Se(19)-Fe(1) & 70.2 & (2) & Fe(4)-Se(19)-Fe(1) & 110.0 & (2) \\ Fe(10)-Se(19)-Fe(4) & 71.3 & (2) & Fe(7)-Se(19)-Fe(1) & 109.3 & (2) \\ Fe(10)-Se(19)-Fe(4) & 71.3 & (2) & Fe(7)-Se(19)-Fe(4) & 109.6 & (2) \\ mean & 70.7 & (5) & mean & 109.6 & (3) \\ \end{array}$	Fe(5)-Se(8)-Fe(4)	71.6 (2)	Fe(9)-Se(18)-Fe(6')	70.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(5)-Se(9)-Fe(4)	72.6 (2)	mean	71.3 (4)
$\begin{array}{ccccccc} Fe(8)-Se(15)-Fe(7) & 71.3 & (2) \\ mean & 71.6 & (5) \\ Fe(3)-Se(4)-Fe(2) & 75.0 & (2) & Fe(3)-Se(5)-Fe(2) & 72.0 & (2) \\ Fe(6)-Se(10)-Fe(5) & 73.4 & (2) & Fe(6)-Se(11)-Fe(5) & 71.0 & (2) \\ Fe(9)-Se(17)-Fe(8) & 74.0 & (2) & Fe(9)-Se(16)-Fe(8) & 73.0 & (2) \\ mean & 74.1 & (7) & mean & 72.0 & (8) \\ mean & 74.1 & (7) & mean & 72.0 & (8) \\ Fe(10)-Se(1)-Fe(1) & 74.9 & (2) \\ Fe(10)-Se(7)-Fe(4) & 75.9 & (2) \\ Fe(10)-Se(13)-Fe(7) & 76.1 & (2) \\ mean & 75.6 & (5) \\ \hline Fe^{-}(\mu_4-Se) -Fe \\ In & Fe_4(\mu_2-Se)_3(\mu_4-Se) & Bridgehead \\ Fe(10)-Se(19)-Fe(1) & 70.2 & (2) & Fe(4)-Se(19)-Fe(1) & 110.0 & (2) \\ Fe(10)-Se(19)-Fe(4) & 71.3 & (2) & Fe(7)-Se(19)-Fe(1) & 109.3 & (2) \\ Fe(10)-Se(19)-Fe(7) & 70.6 & (2) & Fe(7)-Se(19)-Fe(4) & 109.6 & (3) \\ \end{array}$	Fe(8)-Se(14)-Fe(7)	71.3 (2)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe(8)-Se(15)-Fe(7)	71.3 (2)		
$\begin{array}{cccccccc} Fe(3)-Se(4)-Fe(2) & 75.0 & (2) & Fe(3)-Se(5)-Fe(2) & 72.0 & (2) \\ Fe(6)-Se(10)-Fe(5) & 73.4 & (2) & Fe(6)-Se(11)-Fe(5) & 71.0 & (2) \\ Fe(9)-Se(17)-Fe(8) & 74.0 & (2) & Fe(9)-Se(16)-Fe(8) & 73.0 & (2) \\ mean & 74.1 & (7) & mean & 72.0 & (8) \\ \hline & & & & & & \\ In \ Fe_4(\mu_2\text{-Se})_3(\mu_4\text{-Se}) \ Bridgehead \\ Fe(10)-Se(1)-Fe(1) & 74.9 & (2) \\ Fe(10)-Se(13)-Fe(7) & 76.1 & (2) \\ mean & 75.6 & (5) \\ \hline & & & & \\ Fe^{-}(\mu_4\text{-Se})-Fe \\ In \ Fe_4(\mu_2\text{-Se})_3(\mu_4\text{-Se}) \ Bridgehead \\ Fe(10)-Se(19)-Fe(1) & 70.2 & (2) \ Fe(4)-Se(19)-Fe(1) & 110.0 & (2) \\ Fe(10)-Se(19)-Fe(4) & 71.3 & (2) \ Fe(7)-Se(19)-Fe(1) & 109.3 & (2) \\ Fe(10)-Se(19)-Fe(7) & 70.6 & (2) \ Fe(7)-Se(19)-Fe(4) & 109.6 & (2) \\ mean & 70.7 & (5) \ mean & 109.6 & (3) \\ \end{array}$	mean	71.6 (5)		
$\begin{array}{c} \mbox{Fe}(6) - Se(1) - Fe(5) & 73.4 \ (2) & Fe(6) - Se(1) - Fe(5) & 71.0 \ (2) \\ \mbox{Fe}(9) - Se(10) - Fe(8) & 74.0 \ (2) & Fe(9) - Se(16) - Fe(5) & 71.0 \ (2) \\ \mbox{Fe}(9) - Se(17) - Fe(8) & 74.0 \ (2) & Fe(9) - Se(16) - Fe(8) & 73.0 \ (2) \\ \mbox{mean} & 74.1 \ (7) & mean & 72.0 \ (8) \\ \mbox{In } Fe_4(\mu_2 - Se)_3(\mu_4 - Se) & Bridgehead \\ \mbox{Fe}(10) - Se(1) - Fe(1) & 74.9 \ (2) \\ \mbox{Fe}(10) - Se(13) - Fe(7) & 76.1 \ (2) \\ \mbox{mean} & 75.6 \ (5) \\ \mbox{Fe}(-(\mu_4 - Se) - Fe \\ \mbox{In } Fe_4(\mu_2 - Se)_3(\mu_4 - Se) & Bridgehead \\ \mbox{Fe}(10) - Se(19) - Fe(1) & 70.2 \ (2) & Fe(4) - Se(19) - Fe(1) & 110.0 \ (2) \\ \mbox{Fe}(10) - Se(19) - Fe(4) & 71.3 \ (2) & Fe(7) - Se(19) - Fe(1) & 109.3 \ (2) \\ \mbox{Fe}(10) - Se(19) - Fe(7) & 70.6 \ (2) & Fe(7) - Se(19) - Fe(4) & 109.6 \ (2) \\ \mbox{mean} & 70.7 \ (5) & mean & 109.6 \ (3) \end{array}$	Fe(3) - Se(4) - Fe(2)	750(2)	Fe(3) - Se(5) - Fe(2)	720(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe(6) - Se(10) - Fe(5)	73.4(2)	Fe(6) - Se(11) - Fe(5)	71.0(2)
$\begin{array}{c} \mbox{rescaled} re(1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Fe(9) - Se(17) - Fe(8)	740(2)	Fe(9) - Se(16) - Fe(8)	730(2)
$\begin{array}{c} \mbox{In Fe}_{4}(\mu_{2}\text{-Se})_{3}(\mu_{4}\text{-Se}) \mbox{Bridgehead} \\ \mbox{Fe}(10) - \text{Se}(1) - \text{Fe}(1) & 74.9 (2) \\ \mbox{Fe}(10) - \text{Se}(7) - \text{Fe}(4) & 75.9 (2) \\ \mbox{Fe}(10) - \text{Se}(13) - \text{Fe}(7) & 76.1 (2) \\ \mbox{mean} & 75.6 (5) \\ \hline & \mbox{Fe}^{-}(\mu_{4}\text{-Se}) - \text{Fe} \\ \mbox{In Fe}_{4}(\mu_{2}\text{-Se})_{3}(\mu_{4}\text{-Se}) \mbox{Bridgehead} \\ \mbox{Fe}(10) - \text{Se}(19) - \text{Fe}(1) & 70.2 (2) \mbox{Fe}(4) - \text{Se}(19) - \text{Fe}(1) & 110.0 (2) \\ \mbox{Fe}(10) - \text{Se}(19) - \text{Fe}(4) & 71.3 (2) \mbox{Fe}(7) - \text{Se}(19) - \text{Fe}(1) & 109.3 (2) \\ \mbox{Fe}(10) - \text{Se}(19) - \text{Fe}(4) & 70.6 (2) \mbox{Fe}(7) - \text{Se}(19) - \text{Fe}(4) & 109.6 (2) \\ \mbox{mean} & 70.7 (5) \mbox{mean} & 109.6 (3) \\ \end{array}$	mean	74.1 (7)	mean	72.0 (8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ta Pa	(u. Sa) (-Sa) Bridgehand	. 2.0 (0)
$\begin{array}{c} Fe(10) - Se(1) - Fe(1) & 74.7 \ (2) \\ Fe(10) - Se(7) - Fe(4) & 75.9 \ (2) \\ Fe(10) - Se(13) - Fe(7) & 76.1 \ (2) \\ mean & 75.6 \ (5) \\ \hline Fe^{-(\mu_4 - Se) - Fe} \\ In \ Fe_4(\mu_2 - Se)_3(\mu_4 - Se) \ Bridgehead \\ Fe(10) - Se(19) - Fe(1) & 70.2 \ (2) \ Fe(4) - Se(19) - Fe(1) & 110.0 \ (2) \\ Fe(10) - Se(19) - Fe(4) & 71.3 \ (2) \ Fe(7) - Se(19) - Fe(1) & 109.3 \ (2) \\ Fe(10) - Se(19) - Fe(7) & 70.6 \ (2) \ Fe(7) - Se(19) - Fe(4) & 109.6 \ (2) \\ mean & 70.7 \ (5) \ mean & 109.6 \ (3) \end{array}$	Fe(10) = Se(1) = Fe(1)	$(\mu_2 - 3c)_3(\mu_4)$	-se) punkenean	
$\begin{array}{c} Fe(10) - Se(1) - Fe(7) & 76.1 (2) \\ mean & 75.6 (5) \\ \hline Fe^{-(\mu_4-Se)-Fe} \\ Fe^{-(\mu_4-Se)} - Fe \\ Fe^{-(\mu_4-Se)} Bridgehead \\ Fe(10) - Se(19) - Fe(1) & 70.2 (2) Fe(4) - Se(19) - Fe(1) & 110.0 (2) \\ Fe(10) - Se(19) - Fe(4) & 71.3 (2) Fe(7) - Se(19) - Fe(1) & 109.3 (2) \\ Fe(10) - Se(19) - Fe(7) & 70.6 (2) Fe(7) - Se(19) - Fe(4) & 109.6 (2) \\ mean & 70.7 (5) mean & 109.6 (3) \\ \end{array}$	$F_{e}(10) - S_{e}(7) - F_{e}(4)$	750(2)		
$\begin{array}{c} \text{re(10)-Se(13)-Fe(7)} & 70.1 \ (2) \\ \text{mean} & 75.6 \ (5) \\ \hline Fe^{-}(\mu_4\text{-}Se) - Fe \\ \hline In \ Fe_4(\mu_2\text{-}Se)_3(\mu_4\text{-}Se) \ Bridgehead \\ Fe(10)-Se(19)-Fe(1) & 70.2 \ (2) \ Fe(4)-Se(19)-Fe(1) & 110.0 \ (2) \\ Fe(10)-Se(19)-Fe(4) & 71.3 \ (2) \ Fe(7)-Se(19)-Fe(1) & 109.3 \ (2) \\ Fe(10)-Se(19)-Fe(7) & 70.6 \ (2) \ Fe(7)-Se(19)-Fe(4) & 109.6 \ (2) \\ mean & 70.7 \ (5) \ mean & 109.6 \ (3) \end{array}$	$F_{e}(10) = S_{e}(12) = F_{e}(7)$	761(2)		
$\begin{array}{c} Fe^{-}(\mu_{4}-Se)-Fe\\ In \ Fe_{4}(\mu_{2}-Se)_{3}(\mu_{4}-Se) \ Bridgehead\\ Fe(10)-Se(19)-Fe(1) 70.2 \ (2) \ Fe(4)-Se(19)-Fe(1) 110.0 \ (2)\\ Fe(10)-Se(19)-Fe(4) 71.3 \ (2) \ Fe(7)-Se(19)-Fe(1) 109.3 \ (2)\\ Fe(10)-Se(19)-Fe(7) 70.6 \ (2) \ Fe(7)-Se(19)-Fe(4) 109.6 \ (2)\\ mean \qquad 70.7 \ (5) \ mean \qquad 109.6 \ (3) \end{array}$	re(10)-30(13)-re(/)	756(5)		
$\label{eq:Fe} \begin{array}{c} & Fe^{-(\mu_4-Se)-Fe} \\ & In \ Fe_4(\mu_2-Se)_3(\mu_4-Se) \ Bridgehead \\ Fe(10)-Se(19)-Fe(1) & 70.2 \ (2) \ Fe(4)-Se(19)-Fe(1) & 110.0 \ (2) \\ Fe(10)-Se(19)-Fe(4) & 71.3 \ (2) \ Fe(7)-Se(19)-Fe(1) & 109.3 \ (2) \\ Fe(10)-Se(19)-Fe(7) & 70.6 \ (2) \ Fe(7)-Se(19)-Fe(4) & 109.6 \ (2) \\ mean & 70.7 \ (5) \ mean & 109.6 \ (3) \end{array}$	moan	(3) 0.0 (3)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Fe-(μ ₄ -	Se)-Fe	
$ \begin{array}{c ccccc} Fe(10)-Se(19)-Fe(1) & 70.2 & (2) & Fe(4)-Se(19)-Fe(1) & 110.0 & (2) \\ Fe(10)-Se(19)-Fe(4) & 71.3 & (2) & Fe(7)-Se(19)-Fe(1) & 109.3 & (2) \\ Fe(10)-Se(19)-Fe(7) & 70.6 & (2) & Fe(7)-Se(19)-Fe(4) & 109.6 & (2) \\ mean & 70.7 & (5) & mean & 109.6 & (3) \\ \end{array} $	In Fe	(µ2-Se)2(u)	-Se) Bridgehead	
Fe(10)-Se(19)-Fe(4) 71.3 (2) Fe(7)-Se(19)-Fe(1) 109.3 (2) Fe(10)-Se(19)-Fe(7) 70.6 (2) Fe(7)-Se(19)-Fe(4) 109.6 (2) mean 70.7 (5) mean 109.6 (3)	Fe(10)-Se(19)-Fe(1)	70.2 (2)	Fe(4)-Se(19)-Fe(1)	110.0 (2)
Fe(10)-Se(19)-Fe(7) 70.6 (2) Fe(7)-Se(19)-Fe(4) 109.6 (2) mean 70.7 (5) mean 109.6 (3)	Fe(10)-Se(19)-Fe(4)	71.3 (2)	Fe(7)-Se(19)-Fe(1)	109.3 (2)
mean 70.7 (5) mean 109.6 (3)	Fe(10)-Se(19)-Fe(7)	70.6 (2)	Fe(7)-Se(19)-Fe(4)	109.6 (2)
	mean	70.7 (5)	mean	109.6 (3)

^{*a*} The data are organized under idealized D_{3h} symmetry.

Table IX. Dihedral Angles (deg) and Displacements (Å) from the Mean Plane $Fe_4(1-3, 10)$ for $[Na_9Fe_{20}Se_{33}]^{5-1}$

Ι	Dihedral Angles between Bridgehead Rhombs							
$Fe_2($	$Fe_2(1.10)Se_2(1.19)/Fe_2(4.10)Se_2(7.19)$ 120.0							
$Fe_2($	1.10)Se ₂ (1,	$19)/Fe_2(7.1)$	(0)Se ₂ (13.1)	9)	119.5			
Fe ₂ (4	4.10)Se ₂ (7.	$\frac{19}{Fe_2(7,1)}$	(0)Se ₂ $(13,1)$	9)	120.5			
in-p	lane	sandwid	ch layer	ot	her			
Fe(1)	-0.074	Fe(4)	2.247	Fe(5)	3.685			
Fe(2)	-0.108	Fe(7)	-1.859	Fe(6)	4,322			
Fe(3)	-0.038			Fe(8)	-3.029			
Fe(10)	0.122	Se(2)	1.777	Fe(9)	-3.962			
		Se(3)	-1,974					
Se(1)	0.053	Se(6)	1.872	Se(8)	3.985			
Se(4)	-0.134	Se(7)	2.184	Se(10)	5.714			
Se(5)	-0.058	Se(9)	2.562	Se(12)	5.484			
Se(19)	0.099	Se(11)	2.371	Se(15)	-3.812			
		Se(13)	-1.779	Se(17)	-4.795			
Na(0)	0.000	Se(14)	-1.576	Se(18)	-3.625			
Na(4)	0.384	Se(16)	-1.975					
				Na(6)	6.717			
		Na(1)	-2.284					
		Na(2)	2.341					
		Na(3)	2.299					
		Na(5)	2.911					

between bridgehead rhombs from 120° (Table IX). This symmetry is broken mainly by small twists in the three Fe_6Se_{10} chains and by the disposition of atoms Na(0,3,3') in the cluster interior.

Because of the large number of independent parameters, the metric data in Tables VII and VIII are organized under D_{3h} symmetry. Most values are unexceptional when compared to molecular Fe-Se clusters.^{25,34,35} However, the alternation of mean Fe-Fe distances in the Fe₆Se₁₀ chains (2.87, 2.76, 2.83, 2.77 Å; Table VII) is somewhat unusual and is absent in either isomer of $[Na_2Fe_{18}S_{30}]^{8-}$, and in the linear clusters $[Fe_3Q_4(SPh)_4]^{3-35,36}$ and $[Fe_4S_6(SEt)_6]^{4-,37}$ In $[Fe_3Se_4(SPh)_4]^{3-}$ the Fe-Fe distance is 2.781 (1) Å.³⁵ The effect is due mainly to the considerably larger nonplanar distortions in Fe₂Se₂ protions over the entire structure are 34.2° and 5.9° for rhombs with short and long Fe-Fe distances, respectively.

The large interchain space with a selenide-rich interior provides a negatively charged cavity that encapsulates the nine sodium ions Na(0,1-4,1'-4'). The majority of these ions make four strong bonding interactions with selenide atoms over the range 2.87 (2)-3.14 (1) Å. Exceptions are Na(0), which has two such contacts with Se(16,16'). The ions Na(3,3'), Fe(3,3'), and Se-(5.6,5',6') give rise to a unique [Na₂Fe₂Se₄] cubane-type substructure. In addition to four strong contacts with neighboring selenides, the ions Na(4.4') enter into weaker interactions with Se(19,19') at 3.27 (2) Å. The remaining four sodium ions Na-(5,5',6,6') are associated with the exterior of the cluster and are involved in other bonding interactions. Na(5.5') are each coordinated to one acetanilide molecule. Na(6.6') are each terminally coordinated to two ethanol molecules and bridged by two ethanol molecules to sodium ions exterior to another cluster related by an inversion symmetry, forming an infinite unidimensional network in which the clusters are arrayed in a parallel fashion. The majority of Na-Se interactions are evident in Figure 9. Its bicyclic nature and the inclusion of sodium ions in its interior distinguish the cluster as an inorganic thiacryptand.

^{(34) (}a) Bobrik, M. A.; Laskowski, E. J.; Johnson, R. W.; Gillum, W. O.; Berg, J. M.; Hodgson, K. O.; Holm, R. H. *Inorg. Chem.* **1978**, *17*, 1402. (b) Rutchik, S.; Kim, S.; Walters, M. A. *Inorg. Chem.* **1988**, *27*, 1515. (c) Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch. **1987**, *42b*, 565.

⁽³⁵⁾ Yu, S.-B.: Papaefthymiou, G. C.: Holm, R. H. Inorg. Chem. 1991, 30, 3476 and references therein.

⁽³⁶⁾ Hagen, K. S.; Watson, A. D.; Holm, R. H. J. Am. Chem. Soc. 1983, 105, 3905.

⁽³⁷⁾ Al-Ahmad, S. A.; Kampf, J. W.; Dunham, W. R.; Coucouvanis, D. Inorg. Chem. 1991, 30, 1164.

Figure 11. Mössbauer spectra of [Na₉Fe₂₀Se₃₈]⁹⁻ in the solid state at 4.2 and 80 K, and in acetonitrile solution at 80 K.

The Fe:Se ratio of 0.526 is the lowest of any molecular Fe-S/Se cluster and approaches the value of 0.5 for $M^{I}FeQ_{2}$ phases (Q = S, Se).³⁸ These contain tetrahedral edge-shared $\frac{1}{2}[FeQ_{2}]$ chains, which is the prevalent bridging modality for all-Fe(III) chalcogenide solid-state molecular compounds.³⁹ Other examples include $[Fe_3Q_4(SR)_4]^{3-,35,36}$ $[Fe_4S_6(SR)_4]^{4-,37}$ and $[Fe_2Q_6]^{6-}$ in $Na_3FeQ_3^{40}$ This bridging arrangement is also present in compounds such as $Ba_9Fe_{16}S_{32}^{41}$ and $Na_3Fe_2S_4^{42}$ which contain one-half or more Fe(III), although the latter compound is not notably stable. The low Fe:Se ratio for [Na₉Fe₂₀Se₃₈]⁹⁻ reflects the fact that edge-shared [FeSe₂]⁻ units in Fe₂Se₂ rhombs constitute the main building block of the cluster, a matter that could otherwise be safely inferred from the conspicuous spectral similarity of the cluster and $[FeSe_2]_n^n$ (Figure 4).

(c) Electronic Features. The Mössbauer spectra of [Na₉Fe₂₀Se₃₈]⁹⁻ were obtained in zero-field at 1.6-180 K and under a longitudinally applied field of 80 kOe at 4.2 K. Spectra of solid and solution samples are shown in Figure 11. They consist of two apparent overlapping doublet features, with the minority doublet appearing as a shoulder on the high velocity side. No magnetic hyperfine structure was observed, discounting the most likely impurities, NaFeS₂ or (Bu₄N)FeSe₂, as responsible for the minority doublet. These compounds, as their sulfide analogues, are expected to show six-line magnetic hyperfine structure. The magnetically perturbed solid-state spectrum consists of the usual four-line pattern for diamagnetic species. All Mössbauer ob-

Figure 12. Cyclic voltammograms of [Na9Fe20Se38]⁹⁻ in acetonitrile solution (100 mV/s). The lower voltammogram was first scanned to negative potentials. Peak potentials vs SCE are indicated.

servations are consistent with a singlet ground state. The temperature dependence of the magnetic susceptibility of [Na₉Fe₂₀Se₃₈]⁹⁻, plotted in Figure 8. is consistent with the Mössbauer spectra in showing antiferromagnetic behavior and a singlet ground state.

The cluster is mixed-valence (18Fe(III) + 2Fe(II)). Subspectra of the ten crystallographically independent iron subsites are unresolved. The spectra were analyzed with a two-subsite model of equal line widths; parameters are contained in Table VI. Nearly all previous Mössbauer data on Fe-Se systems have come from our recent comprehensive study of Fe-Se-SR clusters.³⁵ The isomer shift of 0.38 mm/s for the majority doublet is comparable with those for $[Fe_2Se_2(SR)_4]^{2-}$ (0.32-0.34 mm/s), indicating an oxidation state near Fe(III). From the empirical relationship between isomer shift and oxidation state for Fe-Se clusters,³⁵ the shift corresponds to the oxidation state 2.91+. For the minority doublet, we obtain 2.76+, for a weighted mean of 2.86+, which is in good agreement with 2.90+ from the chemical formula. No distinct Fe(II) sites were detected in the spectra. We conclude that this cluster, as $[Fe_4Se_4(SR)_4]^{2-,3-}$ and $[Fe_6Se_9(SR)_2]^{4-,35}$ is electronically delocalized. The near-identity of the Mössbauer spectra in the solid state and in acetonitrile solution indicates that the bicyclic structure is retained in solution.

(d) Reactivity. As shown by the cyclic voltammograms in Figure 12. [Na₉Fe₂₀Se₃₈]⁹⁻ undergoes a chemically reversible $(i_{\rm pa}/i_{\rm pc} \approx 1)$ oxidation at $E_{1/2} = -0.84$ V. Controlled potential coulometry (30 min) gave n = 2.05 F, indicating a two-electron oxidation to an all-Fe(III) cluster. However, the product proved to be insufficiently stable for isolation. The cluster exhibited a auasireversible multi-electron reduction(s) centered near -1.5 V which, from comparison of oxidative and reductive currents, involves 4-6 e⁻. However, the cluster evidently was not significantly altered structurally inasmuch as the two-electron process was recovered upon scan reversal.

The reactions of [Na₉Fe₂₀Se₃₈]⁹⁻ with thiols and thiolates were examined in order to see if new cluster species could be obtained by cleavage of the structure. No reaction was observed between 50 equiv of NaS-p-tol (tol = tolyl) and the cluster in Me_2SO solution for 22 h at room temperature followed by heating for 5 h. However, when the cluster was treated with 9.4 equiv of [Fe(S-p-tol)₄]²⁻ in acetonitrile solution for 24 h, a black crystalline sparingly soluble product. identified by ¹H NMR spectroscopy as (Bu₄N)₂[Fe₄Se₄(S-p-tol)₄].⁴³ was obtained in quantitative yield based on cation. Workup of the reaction filtrate afforded a small

⁽³⁸⁾ Q = S: (a) Boon, J. W.; MacGillavry, C. H. Recl. Trav. Chim. Pays-Bas 1942, 61, 910. (b) Bronger, W. Z. Anorg. Allg. Chem. 1968, 359, 225. (c) Klepp, K.; Boller, H. Monatsh. Chem. 1979, 110, 1045. (d) Bronger, W.; Müller, P. Stud. Inorg. Chem. 1983, 3, 601; Chem. Abstr. 1983, 98, 2266379. (e) Bronger, W.; Kyas, A.; Müller, P. J. Solid State Chem. 1987, 0, 262 70, 262.

 ⁽³⁹⁾ There are several exceptions. (a) Ba₃Fe₄S₁₁: Steinfink, H. Adv.
 Chem. Ser. 1980, 186, 409. (b) Ba₉Fe₄S₁₅: Cohen, S.; Rendon-Diazmiron,
 L. E.; Steinfink, H. J. Solid State Chem. 1978, 25, 179.
 (40) Müller, P.; Bronger, W. Z. Naturforsch. 1979, 34b, 1264; 1981, 36b,

⁶⁴⁶

^{(41) (}a) Reiff, W. M.; Grey, I. E.; Fan, A.; Eliezer, Z.; Steinfink, H. J. Solid State Chem. 1975, 13, 32. (b) Hoggins, J. T.; Steinfink, H. Acta

Crystallogr. 1977, B33, 673. (42) (a) Klepp, K.; Boller, H. Monatsh. Chem. 1981, 112, 83. (b) Boller, H.; Blaha, H. Monatsh. Chem. 1983, 114, 145.

Figure 13. Quasi-density-of-states (DOS) representation of the MO energy level diagrams of α - and β -[Fe₁₈S₃₀]¹⁰⁻ and of [Fe₂₀Se₃₈]¹⁸⁻ as calculated by the extended Hückel method. The dominant orbital components of each orbital block are indicated; occupied orbitals are shaded.

amount of black solid whose spectroscopic properties indicated it to be the p-tol analogue of $[Fe_6Se_9(SEt)_2]^{4-,35,44}$ Variations in the reaction conditions, including initial mol ratio and reaction time and temperature, afforded mixtures of these two clusters. Treatment of $[Na_9Fe_{20}Se_{38}]^9$ with 60 equiv of p-tolSH afforded crystalline $(Bu_4N)_2[Fe_4Se_4(S-p-tol)_4]$ in 70% yield based on iron. Similar variations in reaction conditions produced largely the cubane-type cluster as the major product, and the byproducts $[Fe_6Se_9(S-p-tol)_2]^{4-}$ and $[Fe_2Se_2(S-p-tol)_4]^{2-45}$ identified by ¹H NMR spectroscopy. Perhaps the potentially most interesting result, cluster cleavage to afford the chain fragments [Fe₆Se₁₀- $(SR)_4]^{6-}$, was not achieved. Among Fe-Q clusters. [Fe₄S₆-(SEt)₄]⁴⁻³⁷ is the longest linear chain cluster yet isolated. $[Na_9Fe_{20}Se_{38}]^{9-}$ resembles $[\alpha - Na_2Fe_{18}S_{30}]^{8-}$ in that cleavage reactions with the same reagents afford analogous cluster products,¹¹ For this reason, the reactions of the β -isomer (other than redox) were not investigated.

Molecular Orbital Description of Electronic Structures. In view of the complexity of the clusters, calculations were performed at the extended Hückel level.⁴⁶⁻⁴⁸ The two isomers of $[Fe_{18}S_{30}]^{10-}$ and $[Na_4Fe_{18}S_{30}]^6$, and $[Fe_{20}Se_{38}]^{18}$ and $[Na_{11}Fe_{20}Se_{38}]^7$ with crystallographic C_i and C_2 symmetry, respectively, were examined. The resultant orbital energy spectra of the three Na⁺-excluded clusters are presented in Figure 13 as quasi-density-of-states (DOS) diagrams, and in Figure 14 as average Fe-S/Se and Fe-Fe

bond overlap populations for individual MO's. The latter plot follows the solid-state notion of COOP (crystal orbital overlap population),49 which provides an explicit means to determine the principal bonding characteristics of a particular MO. It is immediately evident from these two figures that the three clusters assume quasi-solid-state band structures and exhibit similar band patterns. Thus the 282 MO's of α -[Fe₁₈S₃₀]¹⁰⁻ and β -[Fe₁₈S₃₀]¹⁰⁻ and the 332 MO's of [Fe₂₀Se₃₈]¹⁸⁻ are packed into five blocks or "bands" which, for the most part, are well separated in energy. In referring to properties below, this order of clusters is retained.

In the lowest blocks at ca. -21 eV are the most stable orbitals, which are of dominant S 3s or Se 4s character and weak Fe-S/Se bonding effects, and equal the number of chalcogenide (Q) atoms in the clusters. The next bands at ca. -15 eV consist of 90 or 114 levels $(3 \times$ the number of Q atoms) in closely packed intervals (2.17, 1.72, 2.21 eV). From Figure 14, the lower orbitals contribute most strongly to Fe-Q $\sigma + \pi$ bonding while the large majority in the upper half are essentially Fe-Fe nonbonding. Above this block and centered at ca. -11 eV are the Fe 3d bands consisting of 90 or 100 MO's (5× the number of Fe atoms) over the intervals 4.13, 4.00, and 3.45 eV. These contain the HOMO's and LUMO's with the slight apparent energy separations indicated in Figure 13. Above these bands are the fourth and fifth orbital blocks with the indicated antibonding characteristics.

In the Fe 3d block, the lower one-third is dominated by Fe-Fe bonding together with nonbonding and weakly antibonding Fe-Q interactions. Consistent with the singlet ground states of α - and β -[Fe₁₈S₃₀]¹⁰⁻, 47 d-type MO's are occupied: their character may be specified further. There are 24 (α) and 22 (β) MO's that are Fe-Fe bonding, equal to the number of Fe-Fe bonding connections between adjacent atoms in the clusters. Among the remaining MO's, five (α) and seven (β) are Fe-Fe nonbonding or weakly Fe-Q antibonding, and 18 in both clusters are Fe-Fe and Fe-S antibonding, thereby roughly cancelling the effects of 18 such

⁽⁴³⁾ Reynolds, J. G.; Coyle, C. L.; Holm, R. H. J. Am. Chem. Soc. 1980, 102, 4350.

^{102. 4350.} (44) $[Fe_{\delta}Se_{9}(p-tol)_{2}]^{4-}$ in MeCN: λ_{max} 302, 305 (sh), 460, 590 (sh); ¹H NMR, δ 4.80, 5.18 (br), 8.54. $[Fe_{\delta}Se_{9}(SPh)_{2}]^{4-}$ in MeCN:³⁵ λ_{max} 327, 440 (sh), 588 (sh) nm. $[Fe_{\delta}S_{9}(SPh)_{2}]^{4-}$ in Me₂SO: λ_{max} 300, 350 (sh), 420 (sh), 530 (sh); ¹H NMR, δ 4.87, 5.7 (br), 8.27 (Christou, G.; Sabat, M.; Ibers, J. A.; Holm, R. H. *Inorg. Chem.* 1982, 21, 3518). (45) Reynolds, J. G.; Holm, R. H. *Inorg. Chem.* 1980, 19, 3257. (46) Fe and S parameters: Silvestre, J.; Hoffmann, R. *Inorg. Chem.* 1985, 24 4108

^{24, 4108.} (47) Se parameters: Hughbanks, T.; Hoffmann, R. J. Am. Chem. Soc.

^{1983, 105, 1150.} (48) Na parameters: Burdett, J. K. Molecular Shapes; Wiley: New York, 1980; Chapter 2.

⁽⁴⁹⁾ Hoffmann, R. Solids and Surfaces; VCH Publishers: New York, 1988; pp 43ff, and references therein.

Figure 14. Average overlap population for each MO for Fe–S/Se (upper) and Fe–Fe (lower) bonding interactions in α - and β -[Fe₁₈S₃₀]¹⁰⁻ and [Fe₂₀Se₃₈]¹⁸⁻. Positive values imply bonding interactions and negative values antibonding interactions.

MO's in the 90-orbital Fe–S bonding group. This reduces to 72 the number of effective Fe–S interactions, which is 4× the number of μ_4 -S atoms, 3× the number of μ_3 -S atoms, and 2× the number of μ_2 atoms. A less strict correlation of molecular topology with the MO bonding scheme also holds for $[Fe_{20}Se_{38}]^{18-}$. Of the 51 filled d-type MO's, 19 are Fe–Fe bonding and 2 are weakly bonding in this sense, as compared to the 21 Fe–Fe bonding connections in the cluster. Apart from the 19 Fe–Fe MO's, the remaining 32 orbitals are Fe–Se antibonding (3 weakly so). This is two short of the 34 MO's that would have been required to reduce the contributions of 114 bonding orbitals in the Fe–Se bonding block to 80, the number of Fe–Se bonding connections. Perhaps Fe–Se bonding has been increased in order to compensate for the lost Fe–Fe bonding effects owing to the elevation of several Fe–Fe bonding orbitals to the unfilled region (Figure 14).

The following are the principal conclusions from the MO calculations: (i) Compositions of filled MO's imply extensive electron delocalization. (ii) The HOMO's and LUMO's are Fe-Q and Fe-Fe antibonding (weakly so in several cases). (iii) The small HOMO-LUMO energy gaps are consistent with the thermal population of paramagnetic states observed in the magnetic susceptibilities. (iv) Inclusion of four and eleven sodium ions in the calculations of Fe₁₈ and Fe₂₀ clusters, respectively, has only a minor effect on the relative energy level schemes and on Fe-Fe and Fe-Q interactions. However, some general trends were found. The Fe-Q bonding bands are widened and stabilized, Fe-Q bonding overlap populations are improved, the antibonding effects in the unoccupied d-type MO's are reduced. apparent charges on Q atoms that interact with Na⁺ are lowered, and the energy

Figure 15. Illustration of the conceptual construction of the clusters $[\alpha$ -Na₂Fe₁₈S₃₀]⁸⁻, $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻, and $[Na_9Fe_{20}Se_{38}]^{9-}$ from a common precursor ring $[Fe_{14}Q_{28}]^{14-}$ (Q = S, Se) and of the conceptual interconversion of the α - and β -isomers. The Fe₁₄Q₂₈ fragment is retained as a perimeter ring in the final cluster structures. Sodium ions, which stabilize all structures shown, are omitted.

differences between the sodium-containing and sodium-free Fe₁₈ and Fe_{20} clusters are 5 and 15 eV, respectively. (v) The average of the net charges of the four nonperimeter Fe atoms in α - and β -[Na₄Fe₁₈S₃₀]¹⁰⁻ (Fe(4,4',7.7') in α , Fe(4,4'.8,8') in β) is significantly less than those of the perimeter Fe14 atoms, suggesting (as from structural considerations) that these are the ferrous-like sites whose presence is indicated by Mössbauer spectroscopy. For $[Na_{11}Fe_{20}Se_{38}]^{7-}$, the net charges of the two bridgehead anchor atoms Fe(10,10') are substantially higher than the average of the net charges of the remaining Fe atoms. (vi) The net charges of the S or Se atoms decrease with increasing bridge multiplicity and overlap populations follow the order $Fe-(\mu_2-S) > Fe-(\mu_3-S)$ > Fe-(μ_4 -S), consistent with Fe-S bond distances. (vii) The two isomers of the Fe₁₈ cluster show highly similar bonding schemes and differ in energy by only 0.35 eV. This is indicative of decreased dependence of overall electronic structure on molecular structural details of isomers when cluster nuclearity is sufficiently high.

Cluster Structural Relationships. Topological analysis of the $[Fe_{18}Q_{30}]^{2-}$ case with eqs 1 and 2 affords seven solutions $[n_{\mu 2}, n_{\mu 3}, n_{\mu 4}]$.⁵⁰ Two of these. [18,12.0] and [20,8,2], are manifested as $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻ and $[\alpha$ -Na₂Fe₁₈S₃₀]⁸⁻, respectively. There are three solutions for the $[Fe_{20}Q_{38}]^{2-}$ problem;⁵⁰ [36,0,2] is represented by $[Na_9Fe_{20}Se_{38}]^{9-}$. As different as these experimentally realized topologies may appear to be, they contain a common structural fragment. viz, a closed $[Fe_{14}Q_{28}]^{2-}$ perimeter ring formed from vertex-sharing of 14 Fe₂Q₂ rhombs. This ring may be visualized as containing inner and outer Q_{14} rings between

⁽⁵⁰⁾ $[Fe_{18}Q_{30}]^{2-}$: $[n_{\mu2},n_{\mu3},n_{\mu4}] = [18,12,0], [19,10,1], [20,8,2], [21,6,3], [22,4,4], [23,2,5], [24,0,6]. <math>[Fe_{20}Q_{38}]^{2-}$: $[n_{\mu2},n_{\mu3},n_{\mu4}] = [34,4,0], [35,2,1], [36,0,2].$

which is a Fe_{14} ring. As shown in Figure 15, the three clusters can be formally constructed from this cyclic fragment. Addition of two $Fe_2(\mu_2 \cdot S)$ fragments gives rise to the two isomers of $[Na_2Fe_{18}S_{30}]^{8-}$. When the two Fe atoms each bind *five* consecutive S atoms of the inner S₁₄ ring in the bridging modes $4\mu_3$ -S + μ_4 -S. the α -isomer is produced. When the binding interactions encompass six consecutive S atoms and the modes $6\mu_3$ -S, the β isomer is generated. The two isomers can be interconverted by the indicated intramolecular sulfide atom attacks on the electrophilic iron centers with consequent topological rearrangement. From isolated yield data based on iron (Figure 3), we infer, but cannot prove, that two isomers exist in equilibrium in alcoholic solution. possibly also with $[FeS_2]_n^m$, and that the equilibrium is shifted by selective precipitation of one isomer as dependent on solvent and cation.

In a similar manner, the expulsion of two Se anions at diagonally opposite ends of the ring generates two edge-shared Fe₂Se₂ rhombs and two three-coordinate iron sites. Addition of a $Fe_6(\mu_2-Se)_{10}Se_2$ chain fragment and formation of one Fe-(μ_2 -Se) and one Fe-(μ_4 -Se) bond at each end of the ring builds the three edge-fused bridgehead rhombs and recovers the bicyclic structure of $[Na_{9}Fe_{20}Se_{38}]^{9-}$.

While the foregoing manipulations are purely conceptual and may not resemble the true assembly mechanisms of the clusters. they do point to a common precursor, [Fe^{III}₁₄Q₂₈]¹⁴⁻. stabilized by sodium ions. This species is in turn derivable by cyclization of the polymer $[FeQ_2]_n^n$, known in linear form in solid-state compounds.^{38de} We prefer an all-Fe(III) formulation of the precursor because, as noted, vertex-shared Fe_2Q_2 rhombs nearly always occur in the Fe(III) state. We observe that, collectively. $[\alpha - Na_2Fe_{18}S_{30}]^{8-}$, $[\beta - Na_2Fe_{18}S_{30}]^{8-}$, and $[Na_9Fe_{20}Se_{38}]^{9-}$ contain the majority of Fe_xQ_y cores known in molecular Fe-Q clusters. These include linear Fe_2Q_2 , linear and cuboidal Fe_3Q_4 . linear

Fe₄Q₆, and Fe₆Q₉. We note that $[\beta$ -Na₂Fe₁₈S₃₀]⁸⁻ is the first synthetic molecular cluster to contain cuboidal Fe₃Q₄ not as part of Fe_6Q_9 . A similar cuboidal Fe_3Se_4 unit with three terminal selenide bridges occurs in the phase Ba₃Fe₃Se₇ prepared at high temperatures.⁵¹ Lastly, there is perhaps no better example of the apparent assembly of clusters from recognized fragments than that provided by this set of three nanometer-sized clusters, which includes a unique example of cluster isomerism. Given the possibilities provided by the topological analysis, it appears that an extensive family of chalcogenometalates should exist based on metals with a tetrahedral stereochemical preference. The cluster set $[\alpha - Na_2Fe_{18}S_{30}]^{8-}$, $[\beta - Na_2Fe_{18}S_{30}]^{8-}$ and $[Na_9Fe_{20}Se_{38}]^{9-}$ demonstrates the (conceptual) principle that in the presence of an appropriate promotor (here Na(PhNCOMe)) high-nuclearity clusters can be assembled by the termination of a unidimensional polymeric fragment via mono- or bicyclization. This approach may lead to the discovery of new regimes of nanometer-sized clusters.

Acknowledgment. This research was supported at Harvard University by NIH Grant GM 28856 and at M.I.T. by ONR Grant NO0014-89-J-1779. X-ray diffraction equipment was obtained by NIH Grant 1 S10 RR 02247. We thank Dr. B. S. Snyder for experimental assistance in the early stages of this work.

Supplementary Material Available: Listing of X-ray crystallographic data for the compounds in Table I and tables of intensity collections, atom positional and thermal parameters, and calculated hydrogen atom positions (17 pp); listing of calculated and observed structure factors (143 pp). Ordering information is given on any current masthead page.

(51) Hong, H. Y.; Steinfink, H. J. Solid State Chem. 1972, 5, 93.

Communications to the Editor

On the Nature of the Olefination Reaction Involving Ditungsten Hexaalkoxides and Aldehydes or Ketones

M. H. Chisholm,* J. C. Huffman, E. A. Lucas, A. Sousa. and W. E. Streib

> Department of Chemistry and Molecular Structure Center Indiana University Bloomington, Indiana 47405 Received September 3, 1991 Revised Manuscript Received January 22, 1992

Pertinent to the development of any reagent for organic synthesis is a knowledge of its scope, limitations, reaction mechanism, and competing side reactions. We are investigating the use of ditungsten hexaalkoxides for the reductive coupling of aldehydes and ketones to olefins.¹ This reaction proceeds in two stages: (1) the reductive cleavage of the carbonyl group of the aldehyde or ketone to yield a μ -alkylidene oxo ditungsten compound (eq 1)² and (2) formation of the olefinic C-C bond and rupture of the carbonyl C-O bond of the second aldehyde or ketone. We report here observations that provide insight into the nature of the initial C-O bond cleavage and subsequent C-C bond formation.

The addition of cyclopropanecarboxaldehyde (1 equiv) to $W_2(ONp)_6(py)_2$, where Np = neopentyl and py = pyridine, in hexane at 0 °C gives the cyclopropylmethylidene complex W₂- $(ONp)_6(\mu-CH(C_3H_5))(O)(py)$ as dark red crystals in ca. 70% yield.³ The structure of this complex is shown in Figure 1⁴ and resembles the previously characterized related complexes W2- $(ONp)_6(\mu$ -CHAr)(O)(py).⁵ To our knowledge, this is the first structurally characterized cyclopropylmethylidene complex.⁶ and

Chisholm, M. H.; Klang, J. A. J. Am. Chem. Soc. 1989, 111, 2324.
 For examples of C=O cleavage by mononuclear W¹¹ compounds and mechanistic studies thereof, see: Bryan, J. C.; Mayer, J. M. J. Am. Chem. Soc. 1990, 112, 2298.

⁽³⁾ All reactions were carried out under dry and oxygen-free atmospheres (N_2) and employed purified, deoxygenated solvents. Satisfactory elemental analyses were obtained.

analyses were obtained. (4) Crystal data for W₂(O)(OCH₂-*t*-Bu)₆(μ -C₄H₆)(py) at -170 °C: a = 12.606 (2) Å, b = 19.923 (4) Å, c = 10.583 (2) Å, $\alpha = 104.52$ (1)°, $\beta = 112.21$ (1)°, $\gamma = 95.16$ (1)°, Z = 2, $d_{calcd} = 1.48$ g cm⁻³, and space group PI. For W₂(O)(OCH₂-*t*-Bu)₆(μ -OC₁₂H₁₆) at -169 °C: a = 11.227 (2) Å, b = 20.634 (3) Å, c = 10.730 (2) Å, $\alpha = 104.73$ (1)°, $\beta = 98.31$ (1)°, $\gamma = 75.56$ (1)°, Z = 2, $d_{calcd} = 1.55$ g cm⁻¹, and space group PI. (5) Chisholm, M. H.; Lucas, E. A.; Sousa, A. C.; Huffman, J. C. J. Chem. Sca. Chem. Commun. 1991, 847

Soc., Chem. Commun. 1991, 847.

^{(6) (}a) Brookhart, M.; Studabaker, W. B.; Husk, G. R. Organometallics 1985, 4, 943. (b) One (trinuclear) cyclopropylmethylidyne complex has been structurally characterized. See: Seidler, P. F.; McKenna, S. T.; Kulzick, M. A.; Gilbert, T. M. Acta Crystallogr. 1985, C41, 352.